
kilobeat: low-level collaborative livecoding

Ian Clester
Georgia Institute of Technology
Atlanta, Georgia, United States

ijc@gatech.edu

ABSTRACT
This paper presents kilobeat, a collaborative, web-based,
DSP-oriented livecoding platform. Players make music to-
gether by writing short snippets of code. Inspired by the
practices of bytebeat, these snippets are low-level expres-
sions representing digital audio signals. Unlike existing plat-
forms, kilobeat does not adapt existing livecoding languages
or introduce a new one: players write JavaScript expressions
(using standard operators and math functions) to generate
samples directly. This approach reduces the amount of back-
ground knowledge required to understand players’ code and
makes kilobeat amenable to synthesis and DSP pedagogy.
To facilitate collaboration, players can hear each other’s au-
dio (distributed spatially in a virtual room), see each other’s
code (including edits and run actions), and depend on each
other’s output (by referencing other players as variables).
Additionally, performances may be recorded and replayed
later, including all player actions. For accessibility and ease
of sharing, kilobeat is built on Web Audio and WebSockets.

1. INTRODUCTION
The scenario is this: some people get together to make

music. Each person has an instrument to play. When some-
one plays, everyone in the room can hear them play, and
everyone can see how they are playing. This instrument is
portable, so people can move around the room while they
play, and this changes where the sound comes from. In good
sessions, people work together, and aside from the occa-
sional solo, people keep their output down to a certain level
of complexity—so they do not dominate the sound, and so
they can dedicate most of their attention to listening and
responding to the other players.

kilobeat is a virtual environment for making music to-
gether remotely. It attempts to make possible the scenario
described above, even when players are physically dispersed
and latencies are too high for real-time approaches. In con-
trast to existing remote livecoding platforms, players in kilo-
beat perform by writing short expressions that generate au-
dio directly, at the sample-level.

1.1 Related Work

Licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: owner/author(s).

Web Audio Conference WAC-2021, July 5–7, 2021, Barcelona, Spain.

© 2021 Copyright held by the owner/author(s).

Figure 1: The kilobeat interface.

There are many projects which deal with remote music-
making. Some attempt to preserve the possibilities of prox-
imate music-making by relaying audio between participants
in real-time (or as close to real-time as network latency al-
lows). This category includes JackTrip [1] and Jamulus,1

along with some commercial products. These are most vi-
able when participants are physically located reasonably
close together (or the music performed does not require tight
synchronization).

Other projects are more flexible with latency, as they syn-
chronize audio to a common timebase. NINJAM2 does this
with audio, while other projects—such as Troop [3], Estuary
[5], and QuaverSeries [4]—do this by having players manip-
ulate code rather than transmit audio directly. kilobeat, as
a networked livecoding platform, falls into this latter cat-
egory: players’ actions are sent to other players with no
timing guarantees, but player code may optionally synchro-
nize to a common clock present in each player’s instance. In
terms of livecoding language and platform, kilobeat is also
related to projects such as Gibber [6], EarSketch [7], and
Jazzari,3 which run in the browser and allow the player to
make music with JavaScript.

Conceptually, kilobeat is inspired by the practices of byte-
beat. To briefly summarize, the term“bytebeat”refers to mu-
sic generated by programs—typically, terse programs con-
sisting of a single expression, mostly comprised of arithmetic
operators with access to a single variable (t for time). Par-
ticipating in bytebeat involves devising or discovering these

1https://github.com/corrados/jamulus
2https://www.cockos.com/ninjam/
3https://github.com/jackschaedler/jazzari

https://github.com/corrados/jamulus
https://www.cockos.com/ninjam/
https://github.com/jackschaedler/jazzari

short musical programs, trying out, appreciating, and tweak-
ing others’ programs, and sharing these programs with the
community. Typically, bytebeat expressions are evaluated to
produce each sample of an 8-bit, 8kHz mono audio stream4,
with access to a variable that is incremented with each sam-
ple. The low sample rate and bit depth give bytebeat its
retro, chiptune aesthetic, but sites that run bytebeat code
generally allow modifying these parameters.5 For a more
complete introduction to bytebeat, see [2].

kilobeat inherits from bytebeat the focus on short, single-
expression programs for generating audio at the sample
level. In the interest of clarity (particularly for those who
know something about audio synthesis but not about byte-
beat), it eschews unsigned 8-bit integer samples and bitwise
arithmetic in favor of floating-point samples and arithmetic
(including familiar math functions such as sin & co.).

2. DESIGN

2.1 Musical Expressions

2.1.1 Language
In kilobeat, players perform by writing and running code

expressions. Once a player runs code, the expression is eval-
uated to generate each consecutive sample of output audio,
one-by-one. These expressions are written in JavaScript, as
supported by players’ browsers. The differences from vanilla
JavaScript are as follows:

• Math functions are in global scope, and thus do not
require the Math. prefix.

• Math.E and Math.PI are available as e and pi, respec-
tively, and Math.random is available as rand.

• The utility function choice (which chooses randomly
among its arguments) is available.

• The special variables x, y, z, acc, t, dt, sr, and now are
available. These are described in more detail below.

• There is an additional syntax for using sin in a way
that accumulates phase, described below.

kilobeat exposes the Math functions globally (and in a few
cases with shorter names) for convenience; this is also the
rationale for including the non-standard (but trivial) func-
tion choice. x, y, z have no predefined purpose; they are
provided in case the player needs to keep track of things be-
tween samples. t, dt, sr, and now are all provided for timing.
t, as in bytebeat, represents the time of the current sample;
that is, the sample the expression is generating. Unlike byte-
beat, t is measured in the sample-rate-independent unit of
seconds rather than samples. sr is the sample rate of the
output audio, and dt is the time in seconds between samples
(equal to 1/sr). now is the time at which the expression was
submitted by the player to replace the old code.

It is worth mentioning one special feature, included to
simplify some common synthesis operations. In addition

4Suitable for redirecting into /dev/dsp or piping into aplay
on Linux.
5Gregg Tavares’s HTML5 Bytebeat (https://github.com/
greggman/html5bytebeat) also supports a variant called
“floatbeat,” which, like kilobeat, uses floating-point arith-
metic.

Code Description

0 Silence

rand()*2-1 Noise (from -1 to 1)

sin(2*pi*200*t) Sine tone (200 Hz)

(t%.005)/.005 Sawtooth wave (200 Hz)

(t%.005)>.0025 Square wave (200 Hz)

sin(2*pi*400*t)*
sin(2*pi*200*t)

Ring modulation

sin(2*pi*400*t)*
(1+sin(2*pi*200*t))/2

Amplitude modulation

sin(2*pi*400*t+
sin(2*pi*200*t))

Phase modulation

sin[0](2*pi*dt*(400+
10*sin(2*pi*200*t)))

Frequency modulation (using
phase-accumulating oscillator)

[300,500,800]
.map(f=>sin(2*pi*f*t))
.reduce((a,b)=>a+b)/3

Chord comprised of three sine
tones

[.3,.4,.5][floor(t%3)] Sequence (cycles through the
list, one element per second)

t<x?(t-x):(x=t+
choice(.6,.3,.2,.1),0)

Random rhythm

t-now<5 Timer; goes off five seconds af-
ter the player pressed “Run”

min(t-now,1) Envelope: ramps from 0 to 1
over the course of one second

Figure 2: Examples of kilobeat expressions.

to the standard invocation sin(x), where sin is a pure
(stateless) function of phase, sin may also be invoked as
sin[i](dx). In this invocation, the function acts like a
phase-accumulating oscillator (like osc~ in MSP or Pure
Data); this variant is a shorthand for sin(acc[i] += dx),
and this syntax is included to simplify frequency modula-
tion. acc is an array of eight floats; it is used internally by
the alternate sin syntax, but may also be accessed by the
player directly.

2.1.2 Expressions
Some examples may help put all this in context. The sim-

plest kilobeat expression (and each players’ initial code when
they join a session) is 0. Each time this expression is eval-
uated, it evaluates to 0, so this code corresponds to endless
silence. A slightly more lively expression, sin(2*pi*400*t),
produces a pure 400 Hz tone. Additional examples are in-
cluded in Fig. 2. To provide the player with a reference
and starting point, kilobeat includes most of these exam-
ples as “presets”: simple expressions that perform common
operations.

Expressions may be combined in all the usual ways. At
the outermost level, + will mix two audio signals, while *
will perform ring or amplitude modulation (or equivalently,
apply an envelope). Nesting expressions, as in the argument
to sin, enables techniques such as FM synthesis. Expres-

https://github.com/greggman/html5bytebeat
https://github.com/greggman/html5bytebeat

sions may be chained via the comma operator, which may
be useful when performing assignments. Branches are avail-
able through the ternary (?:) operator (and implicity by
short-circuiting && or ||), and anonymous functions are al-
lowed. In short, players may construct arbitrarily complex
programs as single JavaScript expressions—but the short
codebox is intended to encourage players to keep their ex-
pressions relatively simple.

2.1.3 Execution
When a player clicks the “Run” button (or presses

Ctrl+Enter), kilobeat compiles their code in a new audio
worklet. If the code is syntactically valid, the new expression
is executed to generate all subsequent samples, and success
is indicated with a brief green flash. If the code has a syntax
error, this is indicated by a brief red flash and shake, and the
player can get more detail by hovering over their expression.
In this case, the last valid code continues running, so as to
minimize audible disruptions.

2.2 Networking & Collaboration
kilobeat’s name is intended to suggest many concurrent

instances of bytebeat. Musical collaboration is at the heart
of kilobeat, and this manifests itself in both kilobeat’s inter-
face and in player code.

2.2.1 Interface
In addition to hearing other players’ output, each player

can see other players’ output visually on an oscilloscope and
spectrum analyzer. Beyond observing their output, each
player can see what every other player is doing. Whenever
a player edits their code, selects text, or moves their cur-
sor, the action is made visible to every other player, Google
Docs-style. Additionally, players can see when others run
their code and the result (acceptance or rejection). These
features are intended to facilitate some of the intentionality
and transparency which is conveyed visually when playing
together in-person.

Furthermore, kilobeat provides a virtual room to play in.
Each player generates a single channel of audio, but each
player has a position and orientation in a virtual 2D room,
and players’ mono audio streams are combined according to
these positions to create a stereo output (using the Head-
Related Transfer Function). Players are free to move around
the room at any time (by dragging their speaker on a can-
vas and scrolling to turn around), and, as with the code
editor, these motions are visible to all other players. This
spatialization is another feature inspired by the experience
of playing together in-person, and it serves as another way
to aurally distinguish and isolate each player’s stream.

2.2.2 Dependence
Collaboration can also occur at a more integral level

in kilobeat. By referring to other player IDs, play-
ers can write code that directly depends on another
player’s audio. For instance, the expression p0 will sim-
ply replicate Player 0’s output (with a small delay), while
sin[0](2*pi*(440+100*p0)*dt) will modulate a tone’s fre-
quency by Player 0’s output. This feature can be exploited
to create complex webs of synthesis without requiring any
one player to take on the full burden of that complexity. De-
pendences provide another avenue for complexity to emerge
from simplicity, in addition to the traditional strategy of

Figure 3: Right side of kilobeat interface, including speaker
positions, run/copy buttons, oscilloscopes, and spectrum an-
alyzers for each player.

playing simple things together.

2.2.3 Other Features
kilobeat offers two features which do not facilitate col-

laboration but are related to it. The first is offline mode:
kilobeat can be played offline, without requiring a server
or other people. Naturally, playing kilobeat with friends is
recommended for best results, but offline mode can be use-
ful for experimentation or demonstration. In offline mode,
the player may create new virtual players and control their
codeboxes as well as their own.

kilobeat also offers a recording mechanism. This does not
record audio, which is readily possible with external tools;
rather, it records all player actions (edits, cursor movements,
etc.), such that a performance may be repeated as it oc-
curred. This recording/playback functionality comes with
an interesting caveat/feature, which is further discussed in
section 3.3.

2.3 Implementation
kilobeat consists of a client and server. The server is min-

imal: like a simple chat server, it relays messages between
clients and performs light bookkeeping. The kilobeat server
is implemented in Python using Flask6 and Flask-SocketIO.7

The client is written in JavaScript and runs in each
player’s browser. It communicates with the server using

6https://flask.palletsprojects.com/
7https://flask-socketio.readthedocs.io/

https://flask.palletsprojects.com/
https://flask-socketio.readthedocs.io/

Figure 4: WebAudio graph on each client.

WebSockets and performs audio synthesis locally with Web
Audio. For synthesis, each player’s code is executed in a
separate Audio Worklet; the source for the corresponding
AudioWorkletProcessor is generated at runtime and filled in
with the player’s code expression. As depicted in Fig.4, each
worklet node is connected to a panner node for spatializa-
tion, an analysis node for the oscilloscope and spectrum ana-
lyzer, and a channel merger node8 for feedback/dependence.
The client is built on the libraries socket.io,9 CodeMirror,10

JSHint.11

3. DISCUSSION

3.1 Composition & Performance Structures
From experience playing with kilobeat “at home” and in

concert, certain usage patterns deriving from kilobeat’s de-
sign have become apparent. These patterns are not explic-
itly a part of kilobeat’s design, but nonetheless emerge from
it.

It is often useful to converse in the midst of perfor-
mance. These may be performance instructions (“let’s move
on to the next section”), improvisational remarks (“check
this out!”), explanatory comments (“this does that like so”),
or suggestions for tweaking details (“p2, speak up a little”).
kilobeat has no built-in chat, but comments serve much
the same function. Prepending a line starting with // (a
JavaScript single-line comment) before an expression has no
effect on the output but allows for chatting with or posting
notices for other players, in much the same way a Google Doc
can serve as an ad-hoc chatroom or bulletin board. Natu-
rally, chat history is not shown (unless players continue to
insert additional comments), but chat history is recorded
with all other performance data by kilobeat’s recording fea-
ture.

When playing with dependences, it’s often useful to come
up with a model for their use—for example, by having play-
ers take different roles. In kilobeat, all expressions are eval-
uated for every sample, so there is no built-in distinction be-
tween control and synthesis. One effective way to play with
dependences is to reintroduce this distinction in some way
that suits the composition, by having players take different
roles and establishing dependences between them based on

8Followed by a delay node, to avoid creating an illegal cycle.
9https://socket.io/

10https://codemirror.net/
11https://jshint.com/

those roles. For example, one player might write an expres-
sion that chooses notes (e.g. outputting frequencies or MIDI
pitch values) while another player, depending on the first,
writes an expression that renders those notes, effectively
specifying timbre. Or one player might output a value sig-
naling a fundamental frequency or a chord that other players
build upon and realize. In both of these cases, the first player
takes on more of a “control” role while the second handles
“synthesis,” but these lines can quickly become fuzzy: the
second player is always free to choose how much of an effect
the first player has on their output, and the first player may
have an expression that changes at audible rates, ultimately
producing a timbral effect.

3.2 Pedagogy
kilobeat was developed with collaborative musical perfor-

mances in mind, and it has been put to this task in two
concerts with the MIT Laptop Ensemble. However, kilobeat
may also have applications in the classroom. Its emphasis on
generating audio at the sample-level, coupled with its hid-
ing lower level details (by using floats instead of integers and
abstracting away sample rate and bit depth) and immediate
feedback (via speaker, oscilloscope, and spectrum analyzer),
make it suitable for demonstrating synthesis concepts. Its
collaborative nature and ease of access make it amenable
to experimentation and discussion. I hope that kilobeat, or
something like it, may serve as a pedagogical tool for DSP
and synthesis education in the future, and I propose that
future work evaluate its fitness for this purpose.

3.3 Caveats
As mentioned previously, kilobeat’s server is minimal,

serving only to broadcast messages between clients. All syn-
thesis is strictly client-side, and player actions are not pre-
cisely timed. This loose timing can be compensated for by
scheduling for the future using the global clock, or by using
dependences to ensure synchronization between voices.

One other consequence of the client-side synthesis and
loose synchronization of client state is that kilobeat perfor-
mances are naturally aleatoric. In particular, kilobeat makes
no effort to synchronize JavaScript’s pseudorandom number
generator between clients,12 so invoking rand() or choice()
will produce different results for different players, and it will
produce different results when replaying a recorded perfor-
mance. This effect is imperceptible when randomness is em-
ployed at the sample level (noise sounds like noise), but it
may become increasingly pronounced with randomness at
higher levels of organization (rhythms, phrases, sections).

4. CONCLUSION
kilobeat is a collaborative livecoding platform with some

unusual features: sample-level audio generation, spatializa-
tion, dependences between players, and aleatoric replays.
kilobeat’s source code is available under the MIT license
at https://github.com/ijc8/kilobeat, a demo video is avail-
able at https://youtu.be/SKCyLakDqkU, and a live demo
is available at https://ijc8.me/kilobeat.

5. ACKNOWLEDGMENTS
12Even if it used a shared seed at the start, the state would
quickly become desynchronized due to the loose action tim-
ing discussed previously.

https://socket.io/
https://codemirror.net/
https://jshint.com/
https://github.com/ijc8/kilobeat
https://youtu.be/SKCyLakDqkU
https://ijc8.me/kilobeat

In addition to the libraries mentioned in Sec.2.3, kilobeat
is particularly indebted to two open-source projects: I used
Arthur Cabott’s Audio DSP Playground13 as my starting
point and style guide, and adapted spatialization code from
Boris Smus’s WebAudio demos.14

I originally developed kilobeat at MIT for the course
SOUND: PAST & FUTURE15 in Spring 2020 and for the
MIT Laptop Ensemble (FaMLE). Thanks to FaMLE for
playing, Tod Machover for early feedback, Jason Freeman
for later feedback, and Ian Hattwick for both.

6. REFERENCES
[1] J.-P. Cáceres and C. Chafe. Jacktrip: Under the hood

of an engine for network audio. Journal of New Music
Research, 39, 09 2010.

[2] V.-M. Heikkilä. Discovering novel computer music
techniques by exploring the space of short computer
programs, 2011.

[3] R. Kirkbride. Troop: A collaborative tool for live
coding. In Proceedings of the 14th Sound and Music
Computing Conference, 2017.

[4] Q. Lan and A. R. Jensenius. Quaverseries: A live
coding environment for music performance using web
technologies. In A. Xambó, S. R. Mart́ın, and G. Roma,
editors, Proceedings of the International Web Audio
Conference, WAC ’19, pages 41–46, Trondheim,
Norway, December 2019. NTNU.

[5] D. Ogborn, J. Beverley, L. N. del Angel, E. Tsabary,
and A. McLean. Estuary: Browser-based collaborative
projectional live coding of musical patterns. In
Proceedings of the International Conference on Live
Coding (ICLC), 2017.

[6] C. Roberts and J. Kuchera-Morin. Gibber: Live coding
audio in the browser. In ICMC, 2012.

[7] A. Sarwate, T. Tsuchiya, and J. Freeman.
Collaborative coding with music: Two case studies with
earsketch. In J. Monschke, C. Guttandin, N. Schnell,
T. Jenkinson, and J. Schaedler, editors, Proceedings of
the International Web Audio Conference, WAC ’18,
Berlin, Germany, September 2018. TU Berlin.

13https://github.com/acarabott/audio-dsp-playground
14https://github.com/borismus/webaudioapi.com
15http://spf.media.mit.edu/

https://github.com/acarabott/audio-dsp-playground
https://github.com/borismus/webaudioapi.com
http://spf.media.mit.edu/

	Introduction
	Related Work

	Design
	Musical Expressions
	Language
	Expressions
	Execution

	Networking & Collaboration
	Interface
	Dependence
	Other Features

	Implementation

	Discussion
	Composition & Performance Structures
	Pedagogy
	Caveats

	Conclusion
	Acknowledgments
	References

