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ABSTRACT

Recent advances in web-based machine learning (ML) tools
empower a wide range of application developers in both
industrial and creative contexts. The availability of pre-
trained ML models and JavaScript (JS) APIs in frameworks
like TensorFlow.js enabled developers to use Al technologies
without demanding domain expertise. Nevertheless, there
is a lack of pre-trained models in web audio compared to
other domains, such as text and image analysis. Motivated
by this, we present a collection of open pre-trained 7Ten-
sorFlow.js models for music-related tasks on the Web. Our
models currently allow for different types of music classifica-
tion (e.g., genres, moods, danceability, voice or instrumen-
tation), tempo estimation, and music feature embeddings.
To facilitate their use, we provide a dedicated JS add-on
module essentia.js-model within the Essentia.js library for
audio and music analysis. It has a simple API, enabling
end-to-end analysis from audio input to prediction results
on web browsers and Node.js. Along with the Web Audio
API and web workers, it can be also used to build real-time
applications. We provide usage examples, discuss possible
use-cases, and report benchmarking results.

1. INTRODUCTION

Nowadays, the Web is one of the most ubiquitous and
thriving computing platforms with an ever-growing number
of possible applications following the updates in Web stan-
dards. Web Audio is an intrinsic part of the next generation
of applications for multimedia content creators, designers,
and researchers, and music tutors, artists, and consumers.
With the adoption of HTML5, the latest W3C Web Au-
dio API specifications and the development of WebAssembly
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(WASM), modern web browsers became capable of more ad-
vanced audio processing, synthesis, and analysis. This has
paved way for the development of new extensive JS software
libraries for audio analysis and music information retrieval
(MIR). Lately, Essentia.js [8] has been released by porting
and extending one of the most common MIR libraries used
in native applications to the Web [6]. There are also few
other existing smaller-scale libraries, offering music audio
analysis [7,9,10,12], but Essentia.js provides the largest va-
riety of music descriptors at this moment and allows high
flexibility for custom analysis chains.

In addition, ML methods, especially deep learning for au-
dio and music processing, allowed for innovative approaches
that greatly complement the traditional signal processing
methods but are not yet well-represented in the web com-
pared to other domains such as text and image processing.
Web ML frameworks with multiple computing back-ends like
TensorFlow.js* and ONNX.js*> have enabled the use of pre-
trained ML models as black-box software systems in typi-
cal web software development workflows, which has helped
application developers to leverage this new set of Al tech-
nologies. The TensorFlow ecosystem provides an easy-to-use
tool to convert pre-trained ML models trained in Python or
C++ into web targets.

Currently, TensorFlow Hub® provides many pre-trained
models ready for deployment in JS applications, yet lacking
most of the common audio problems. This is not surprising
considering that many ML audio models require an inter-
mediate representation of audio signal derived from spectral
analysis as an input for inference (except for few models that
operate on raw audio). And this input has to be the same
as the one used when training the model (e.g., in Python)
to produce the expected results. Essentia recently released
a collection of pre-trained TensorFlow models for audio and
music related tasks [2,3]. These models are optimised for
production and are trained with the audio representations
computed using Essentia itself, which makes them an po-
tential choice to be ported to TensorFlow.js models for the
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web platform. However, using pre-trained models via ML
libraries like TensorFlow.js directly can be cumbersome for
a wide range of application developers, creative coders and
artists since it demands some ML domain expertise. In order
to avoid this overhead and facilitate inclusivity and usability
of these tools, a few new JS abstraction libraries and tools
were created with a user-friendly APIs [1,4,14]. Some of
these tools were specifically designed with creative applica-
tions in mind.

In this paper, we present a collection of TensorFlow.js au-
dio ML models for music processing along with a high-level
add-on JS module essentia.js-model integrated into the Es-
sentia.js library. This module allows developers to do end-
to-end processing from audio input to the models’ prediction
results with a simple JS API. The rest of the paper is orga-
nized as follows. Section 2 briefly outlines the various com-
ponents of Essentia.js. Section 3 presents the pre-trained
models available in Essentia, which we have ported for Ten-
sorFlow.js. In Section 4 we describe a new add-on module
for Essenita.js that we developed to facilitate using both
libraries together with our models and provide example ap-
plications and benchmarking results. Finally, we conclude
and discuss future work in Section 5.

2. ESSENTIA.JS

Fssentia.js* is a JS library powered by a WASM back-end
of the popular audio and music analysis library Essentia [6].
It provides an extensive collection of over 200 algorithms
for typical sound and music analysis tasks, including spec-
tral, tonal, and rhythmic characterization. The library is
suitable for onset detection, beat tracking and tempo esti-
mation, melody extraction, key and chord estimation, sound
and music classification, cover song similarity, loudness me-
tering, and audio problems detection, among other common
tasks.

The core of the library is powered by the Essentia WASM
backend, based on the Essentia C++ library, which is cou-
pled with custom JS bindings and high-level JS API. All
the algorithm methods are configurable similarly to Essen-
tia’s C++/Python APT itself. The build tools provided with
the library allow creating lightweight builds of the library,
with only a few specific algorithms required for a particular
application.

In addition to the core library, Essentia.js has a few add-
on modules to facilitate common MIR tasks. In particular,
essentia.js-extractor contains predefined feature extractors
for common MIR tasks, computing BPM, beat positions,
pitch, predominant melody, key, chords, chroma features,
MFCC, etc. Also, essentia.js-plot provides helper functions
for visualization of MIR features, allowing both real-time
and offline plotting in a given HTML element.

See our paper introducing Essentia.js [8] and the online
documentation for more details.

3. TENSORFLOW MODELS

Essentia models is a repository of pre-trained machine
learning models publicly available under the Creative Com-
mons BY-NC-ND 4.0 license® and intended to use within
Essentia.® Many of them are classifiers for specific music
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audio annotation tasks. Other models are trained on large
generic MIR datasets and can be used to extract feature em-
beddings. In [2,3], the authors give further implementation
details and perform an extensive evaluation of the provided
models.

For this work we focused on the following models for the
tasks of auto-tagging [13], tempo estimation [15], and clas-
sification based on transfer learning [2, 3]:

e Two auto-tagging models trained on Million Song Dataset
(MSD) [5] and MagnaTagATune (MTT) [11] with acti-
vations for the top-50 tags in each taxonomy. The tags
contain information related to the genre, instrumentation,
mood or era of the music (e.g., rock, pop, alternative, in-
die, electronic, female, vocalists, dance, 00s, alternative
rock, and jazz).

e The tempo models estimate the tempo of music ranging
from 30 to 286 BPM. We included a variety of CNN ar-
chitectures with different model sizes.

e Various classifiers for genre, mood, and other semantic
categories trained using transfer learning. We used the
above-mentioned auto-tagging models to extract embed-
dings that were then used as input features to train the
classifiers. This technique allows leveraging the knowl-
edge acquired on our larger datasets from auto-tagging
for more specific classification tasks. Table 1 contains the
classes available on each tasks.

Task Classes

dortmund

alternative, blues, electronic, folk-
country, funksoulrnb, jazz, pop,

© raphiphop, rock
2 gtzan blues, classic, country, disco, hip
a0 hop, jazz, metal, pop, reggae, rock
rosamerica classic, dance, hip hop, jazz, pop,
rhythm and blues, rock, speech
acoustic acoustic, non acoustic
aggressive aggressive, non aggressive
= electronic electronic, non electronic
g happy happy, non happy
£ party party, non party
relaxed relaxed, non relaxed
sad sad, non sad
danceability danceable, non danceable
voice/instrum. voice, instrumental
gender male, female
_ tonal/atonal  atonal, tonal
2 urbansound8k air conditioner, car horn, children
E playing, dog bark, drilling, engine

idling, gun shot, jackhammer, siren,
street music

fs-loop-ds bass, chords, fx, melody, percussion

Table 1: Tasks used to train the transfer learning classifiers.

Table 2 compares the different architectures in terms of
receptive field (seconds of audio required to perform a pre-
diction), number of parameters, size in megabytes and pur-
pose. Note that we only account for the feature extractor
part of the transfer learning model, as the fully-connected
classifiers are negligible in size. We considered a wide vari-
ety of model capabilities in terms of parameters so it is not
expected that all the models are suitable for web deployment
on computationally-weak devices.



Model RF (s) Params. Size (MB) Purpose
MusiCNN 3 787K 3.1 AT/TL
VGG 3 605K 2.4 AT/TL
VGGish 1 62M 276 TL
TempoCNN 12 [27K-1.2M] [0.1-4.7]  Tempo

Table 2: The Essentia models. RF: Receptive field, AT: Auto-
tagging, TL: Transfer learning.

Figure 1 shows the activations produced by all the auto-
tagging and classification taxonomies on the song Bohemian
Rhapsody by the rock band Queen. It can be seen how
some of the classes can be useful to describe the structure
of the song. Note that the transfer learning classifiers need
to activate an output even when none of the choices seem
appropriate. Hence, we can find some incongruences, such as
the label ambient from the mood electronic classifier. Even
if it does not seem an adequate label, the classifier does not
contain better choices.

3.0.1 Essentia models in TensorFlow.js

The ability to deploy client-side deep learning models is a
attractive feature supported by a growing amount of frame-
works. By the time we started this work the main options
to go were TensorFlow.js and ONNX.js. We identified the
following advantages of using TensorFlow.js in our case:

e It is the most actively maintained project with extensive
documentation and example projects.

e It is part of the TensorFlow ecosystem, the same deep
learning library used in Essentia, which is very convenient.

e It supports multiple backend options such as WebGL and
WASM for inference on browsers or Node.js, which pro-
vides flexibility for future scenarios.

e It provides a conversion tool able to easily handle the for-
mat of existing Essentia models.

We used the TensorFlow.js converter’ to port the models
from frozen protocol buffers to the TensorFlow.js format.
While in the frozen format the topology and weights are
contained in the same binary file, TensorFlow.js models are
defined in two files: a human-readable JSON file containing
the topology and a binary file with the model weights. None
of the weight quantization options offered by the converter
were applied. The models take approximately the same data
size after conversion.

We compared the activations generated by both the orig-
inal and the converted models finding minimal numerical
differences in the range of le ®. We have also seen similar
differences when testing the original models under differ-
ent computer architectures or TensorFlow versions. After a
further inspection of prediction outcomes, we conclude that
they are too small to alter the sense of the predictions in
any case.

All the converted models are available for download on
the Essentia website.® They can be used for inference on a
wide variety of devices without any necessity for a dedicated
GPU (similar to TensorFlow.js).

"https://github.com /tensorflow /tfjs
Shttps://essentia.upf.edu/models
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Figure 1: Activations for the MSD and MTT auto-tagging
taxonomies and for all the transfer learning classifiers.



// Import Essentia WASM backend

import {EssentiaWASM} from ’essentia.js’;
import {EssentiaTFInputExtractor} from
’./essentia.js-model.es.js’;

// Instantiate feature extractor for MusiCNN-based models
const extractor = new EssentiaTFInputExtractor (EssentiaWASM,
musicnn’);

// Load a mono audio file from a given URL using Web Audio API

const audioURL = "https://freesound.org/data/previews
/328/328857 _230356-1q.mp3";

const audioContext = new AudioContext ();

const audioBuffer = await extractor.getAudioBufferFromURL (
audioURL, audioContext);

// Downsample audio to required sample rate
const audio = extractor.downsampleAudioBuffer (audioBuffer);

// Compute mel-spectrogram
let inputFeature = extractor.computeFrameWise (audio);

Listing 1: Example of offline audio feature extraction for the
MusiCNN-based models using Essentia.js-model via ES6
style imports.

4. ESSENTIA.JS-MODEL

To use our pre-trained models in TensorFlow.js, one would
have to implement the exact audio representations needed
by the models as an input, which requires some develop-
ment effort and domain knowledge. Models based on dif-
ferent CNN architectures expect different types and reso-
lutions of input spectrogram representations for inference.
Yet, in a regular web development workflow, many users
won’t necessarily need to know these specifics. We therefore
developed essentia.js-model, an add-on JS module for Fs-
sentia.js. It combines both feature extraction using Essen-
tia.js and model inference using TensorFlow.js. The APIs
for achieving both of these processes are decoupled to allow
more complex use-cases (for example, doing feature extrac-
tion and inference sessions in separate web workers). The
detagi)led API documentation of the module is available on-
line.

4.1 Getting started

In this section, we outline several usage examples and ap-
plication scenarios for getting started with essentia.js-model.
The library can be imported into a web application using the
following methods:

e HTML <script> tag. The simplest way to use essentia.js-
model module is by using it with the HTML <script> tag.
Note that, this will run your model inference on the main
UI thread.

e NPM/Yarn. It can be also accessed from NPM by in-
stalling the latest version of Essentia.js with the command
npm install essentia.js or yarn add essentia.js.

e ES6 class imports. essentia.js-model can be also imported
using the ES6 class style imports in JS using the builds
distributed on Github releases'® or on NPM. This allows
users to integrate the code into any modern JS frame-
work. Listing 1 and 2 show an example of using ES6 style
imports of essentia.js-model.

e CDN. We provide CDN links for instantly serving the
these builds online using free third-party web services.

“https:/ /essentia.upf.edu/essentiajs
Yhttps://github.com/MTG /essentia.js/releases

// Import essentia.js-model and tensorflow.js
import {TensorflowMusiCNN} from ’./essentia.js-model.es.js’;
import * as tf from "@tensorflow/tfjs";

// Path where the tfjs models are stored
const modelURL = "./autotagging/msd/msd-musicnn-1/model. json";

// Create an instance of EssentiaTensorflowJSModel
const musiCNN = new TensorflowMusiCNN(tf, modelURL);

// Promise for initializing the model
await musiCNN.initialize();

// Run model inference on the given feature input
let prediction = await musiCNN.predict (inputFeature);

Listing 2: Example of inference of MusiCNN-based models
from the feature input computed in Listing 1 wusing
Essentia.js-model via ES6 style imports.

4.1.1 Input feature extraction

The proposed module provides an interface for feature ex-
traction via the FEssentia TFInputEztractor class. This class
helps the user ensure the correct type and size of input au-
dio feature representation matching the desired models of
choice. Its constructor is created by passing the FEssenti-
aWASM import from the Essentia WASM backend shipped
with FEssentia.js and choosing your target extractor type.
The compute method of the class computes the feature rep-
resentation for a given audio frame. Listing 1 shows an
example of using the class for an offline feature extraction
task with the MusiCNN-based models.

4.1.2 Inference

The proposed module provides its model inference func-
tionalities through the classes TensorflowMusiCNN, Tensor-
flowVGGish and TensorflowTempoCNN for models with the
MusiCNN, VGGish and TempoCNN architectures respec-
tively. Each of these classes’ constructor is created by pass-
ing a global import of TensorFlow.js package and path to
where the pre-trained model is stored (can be both an URL
or a local file path). The predict method returns the out-
put of the inference session as a promise for a given input
feature representation which is pre-computed by FEssenti-
aTFInputExtractor. Listing 2 shows an example of using
TensorflowMusiCNN.

4.2 Applications

There are a lot of potential web applications that can be
built with essentia.js-model. The library, along with the
pre-trained models, provides algorithms for typical sound
and music analysis tasks such as music auto-tagging, tempo
estimation, genre identification, and mood classification, to
mention a few. We show some starter web application ex-
amples for the above-mentioned use-cases in our online doc-
umentation.!! Besides, these models can also be used for
transfer learning tasks, using the model output as features
to train a new ML model.

Web applications with real-time analysis can be built by
leveraging Audio Worklet for audio feature extraction and
WebWorker for model inference. We have put together a
minimal code example'? using these web technologies to

"https: //mtg.github.io/essentia.js/docs/api/
2https://glitch.com/edit /#!/essentia-js-models-rt ?path=
README.md




perform real-time inference with an auto-tagging MusiCNN
model. We also provide this as a live web example.!® For
JS server applications, TensorFlow has a dedicated wrap-
per tfjs-node with direct bindings to the TensorFlow C API,
which can be used in Node.js run-time applications. Note
that not all of these models we provide are suitable for real-
time inference on web browsers, though.

4.3 Benchmarking

We measured the performance of the models across differ-
ent platforms: Node.js, Chrome and Firefox browsers (since
they are amongst the most widely used'*) and, as a baseline
for comparison, the standard Essentia C++ models using
its Python bindings. We carried out the reported tests on a
Macintosh machine running macOS 10.15.7, with a 2.2 GHz
6-core i7 CPU and 16 GB of RAM. For each model, we ran
three benchmark functions: time spent on feature extraction
(using the algorithms corresponding to each model’s archi-
tecture), on inference, and on the entire end-to-end process,
i.e. feature extraction and inference. All tests were per-
formed on a one-minute WAV audio file (since this is closer
to a real use case than shorter fragments), re-sampled to 16
kHz, and mixed down to mono. Note that browser tests
were performed on the main UI thread, and we did not
benchmark the models’ real-time capabilities. We tested
two auto-tagging architectures, MusiCNN and VGG, and
four transfer-learning classifiers, trained for genre and mood
classification using pre-trained MusiCNN and VGGish mod-
els.

As a baseline we tested the C++ implementation of the
algorithms (using Python bindings), running each of the test
functions (feature extraction, inference, and end-to-end) 50
times and taking the average of the time measured using
Python’s time.perf_counter(). The same approach was
taken to perform the tests on Node.js and browsers (us-
ing Date.now()), except that the average of 10 repetitions
was taken instead of 50, since running the models for 1min
of audio on the Javascript platforms took longer than the
baseline. All browser benchmarks were done using the Ten-
sorFlow.js WebGL backend, which is selected by default on
desktop devices. Figure 2 shows the results of these tests.
Overall the end-to-end process takes from 7.1 to 15.7 times
slower than on the native platform, taking up to 18.2 sec-
onds to analyze a 60-second audio input. Feature extraction
is consistently slower than inference across all benchmarks,
which may be due to the fact that tensor operations can
be run in parallel whereas feature extraction is not. We
repeated these benchmarks using the WASM TensorFlow.js
backend which, unlike the WebGL backend, does not execute
tensor operations on the device’s GPU: with this backend,
inference is on average 12 times slower on Chrome, and 90
times slower on Firefox. We are unsure what could be the
causes of such discrepancies between Chrome and Firefox.

S.  CONCLUSIONS

We have presented a collection of pre-trained ML mod-
els ported for TensorFlow.js and a new Essentia.js add-on
module for their easy use in Web applications requiring mu-
sic/audio analysis. These models address some of the com-
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Figure 2: Per-model performance in seconds for each of the
tested platforms averaged over 50 runs for the Python base-
line and 10 runs for Node.js and browsers. Results for 1min
WAV audio file.

mon music classification tasks, tempo estimation, and ex-
traction of music feature embeddings, some of them avail-
able for real-time applications. The new addition of ML
models expands the functionality of FEssentia.js even fur-
ther, allowing for many industrial and creative use-cases in
Web Audio.

In our future work, we will focus on adding more pre-
trained models for different MIR use-cases. We also aim to
develop interesting web applications that go beyond typi-
cal MIR tasks to attract and build a diverse user commu-
nity. For better portability, we will also consider creating
the models in the ONNX format.
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