Csound Web-IDE

Steven Yi

Rochester Institute of
Technology

syyigm@rit.edu

ABSTRACT

Csound Web-IDE! is an open-source?, browser-based inte-
grated development environment (IDE) for sound and mu-
sic computing using Csound[4]. The web application offers
users the ability to edit and run standard, multi-file Csound
projects in the same way they would do on the desktop,
mobile, and embedded platforms. Enabled by modern web
technologies, envisioned use cases for the Web-IDE include
computer music education, music composition, and develop-
ment of realtime interactive systems, as well future integra-
tion with other Web Audio-based systems.

Keywords
Csound, Web IDE, Web Audio, Web MIDI

1. INTRODUCTION

As the capabilities of the modern web platform continue to
grow, so too does the ability to develop more complex mul-
timedia software applications once only possible on tradi-
tional native platforms. Modern web APIs such as the Web
Audio API and the WebAssembly runtime make it possible
to create, or port existing libraries to build complex audio
processing and music composition software systems. Also,
the increasing availability of mature Ul frameworks built on
top of existing web technologies, such as Angular and React,
have also greatly streamlined the development of elaborate
and responsive user interfaces.

Additionally, the web platform coupled with cloud based
database/application platform services such as Google’s
Firebase® also offers a robust means of application distri-
bution, document storage and online collaboration tools.
This confluence of technologies has allowed us to develop a
fully featured IDE—called Csound Web-IDE, shown in Fig-
ure 1—for the Csound language which in many ways extends
the capabilities of previous Csound-based environments by
leveraging the unique power of the web-based software stack.

"https://ide.csound.com
https://github.com/csound /web-ide
Shttps:/ /firebase.google.com/

Licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: owner/author(s).

Web Audio Conference WAC-2019, December 4-6, 2019, Trondheim, Norway.

(© 2019 Copyright held by the owner/author(s).

HI6dver Sigurdsson
Berlin, Germany
hlolli@gmail.com

Edward Costello

Music Department
Maynooth University, Ireland

edward.costello@mu.ie

Figure 1: Primary Csound Web-IDE interface show-
ing project file-tree and code editor.

Employing the Web Audio Csound library as the basis
of the IDE enables users to be able to write, compile, and
run Csound compositions on any computer with a modern
web browser without installing any additional software or
libraries. It also allows for the controlling of Csound-based
synthesisers using the Web MIDI API and to continually re-
compile and update running Csound code via live coding.
Users can also store their Csound instruments and composi-
tions online giving them the ability to share and collaborate
on documents with other participants. These capabilities
greatly reduce any friction involved with using the Csound
language and also potentially creates an environment which
will allow users to easily distribute, incorporate into their
own projects, and learn from an online library of Csound
based instruments, effects and compositions.

2. RELATED WORK

Traditional desktop IDEs, such as Visual Studio® and
XCode®, operate within the context of their platforms where
projects are generally made up of files that are organized into
directories that all exist on a filesystem. IDEs like these pro-
vide development experiences where users may edit, compile,
run, and debug projects all within a single application. Al-
though the IDE may provide a unified interface to the user,
they often depend upon secondary programs (e.g., compil-
ers, linkers, debuggers) to perform operations.

Web IDEs operate much like their desktop counterparts
but are developed using browser technologies. They fea-

“https://visualstudio.microsoft.com/
®https://developer.apple.com/xcode/



ture similar offerings of a unified interface for code-based
projects and depend upon either server-side or client-side
tools (e.g., compilers, audio engines) for executing those
projects. Web IDEs offer additional features unique com-
pared to desktop IDEs in that they are delivered over the
network with zero-installation required, making them easy
to deploy to end users (assuming they have a compatible
browser). They also interoperate easily with servers to or-
ganize and persist projects for easy access by users across
multiple systems. While recent developments of Web Audio
and Web MIDI standards have allowed browser-based music
applications to approach the level of features and perfor-
mance found in desktop platforms, they are not quite as
robust and performant as of yet. However, web applications
on the browser platform offer solutions to satisfy unique use
cases that traditional desktop IDEs can not do so easily or
at all.

Within the Csound ecosystem, for Csound Web-IDE,
we seek to create a comparable experience to the desk-
top CsoundQt® and Cabbage” applications. CsoundQt is a
cross-platform IDE that works with projects on the filesys-
tem, offers syntax-higlighting and code completion in its
code editors for Csound code, uses Csound for rendering
to disk and in realtime, and offers custom audio and MIDI
I/0 using audio and MIDI systems native to the desktop
platforms. CsoundQt also offers tools such as audio scopes,
UI widgets, and other features to provide a single working
environment for Csound users. For Csound Web-IDE, the
use cases and feature set of CsoundQt are the closest to what
we are targetting for our initial phases of development.

Cabbage is a framework for audio software development
that provides an IDE capable of running standalone as well
as exporting binary audio plugins for VST and AU formats.
Cabbage employs Csound as its audio engine via Csound’s
API and works within its target context, either generating
audio directly to the desktop system’s audio system or gener-
ating and processing signals within the host VST or AU API.
Cabbage’s primary standalone IDE features largely overlap
with CsoundQt, though its support of industry plugin for-
mats is unique in the Csound ecosystem. While supporting
binary plugin generation is not a concern at this time for the
Csound Web-IDE, we expect to have continued discussions
with Cabbage’s author in the future to see where compatibil-
ity with Cabbage’s feature set and projects can be achieved.

Looking at web-based audio IDEs, the Faust Online Com-
piler[5]® (FOC) provides a browser-based web application
for editing, compiling, and running Faust code. Originally
a server-based solution where the compiler would run on
the server-side, the system evolved to use a WebAssembly
Faust compiler to run completely client-side. The Web Au-
dio backend for the Faust compiler allows for realtime testing
of Faust code for signal processing. The Faust Online Com-
piler simplifies development for users who may find setting
up the Faust toolchain difficult on the desktop by providing
a zero-install solution that is capable of working with single-
file Faust projects. However, it does not save projects to the
server, nor supports multi-file projects.

SOUL Playground® is an online environment for devel-

Shttp://csoundqt.github.io/
"http://cabbageaudio.com/
Shttps://faust.grame.fr/onlinecompiler/
https:/ /soul.dev/playground/

oping and testing single-file projects using the SOUL!®
domain-specific language for audio programming. Similar
in features to the Faust Online Compiler, the playground
allows compiling SOUL projects in the browser and audi-
tioning the results using Web Audio and Web MIDI. The
SOUL playground does not have import/export features like
FOC, but does have a global server-side saving system that
is not tied to accounts. Users can press the “Compile and
Run” option to audition results, then use the “Share this
playground” button to provide a link to a saved project.
The ability to share projects easily through web URLs pro-
motes a socially-rich online culture for an ecosystem and is
one that we plan to implement for the Csound Web-IDE.

Looking at non-audio web IDEs, a number of systems pro-
vide multi-file project support. CodePen'! describes itself
as a “social development environment” and provides a sys-
tem for multi-file projects with a fixed-set of files (CodePen
Pens, made up of a single HTML, JS, and CSS file) as well
as an user-definable set of directories and files (CodePen
Projects). Both systems provide editors for files of differ-
ent types, though Projects allow the user flexibility to add
as many files and directories as desired. Both systems also
provide options to export the project from CodePen into
a zip that can be expanded and further edited and used
from a desktop system. In addition to the development en-
vironment, projects can be made either public or private
as well as forked for modification by other users. Code-
Pen’s Projects is a fully-featured IDE that compares well
with desktop IDEs and maintains projects using a virtual
filesystem that compares well the desktop IDE development
experience. The Csound Web-IDE seeks to provide a simi-
lar feature for social development set as CodePen Projects
but targetting Csound audio and music work rather than
client-side web development.

Glitch provides both client-side and server-side develop-
ment using multi-file projects served from per-user virtu-
alized containers. Glitch touts easy remizing of projects
(similar to CodePen’s forking system), saved project his-
tory backed by Git, as well as realtime collaboritive editing
through its Team system. While we are not looking at these
features for the current phase of Csound Web-IDE develop-
ment, we do look to Glitch as a model of features that we
would like to implement in future iterations of our project.

JSFiddle!? is a fixed-set, multi-file web IDE, similar to
CodePen’s Pens system. JSFiddle provide easy, quick exper-
imentation for small experiments that does not require log-
ging in; boilerplates as starting points for projects; project
history and forking; as well as easy inclusion of many popu-
lar third-party JS libraries via entering a URL or searching
for them through a registry. JSFiddle’s anonymous exper-
imentation and importing of libraries are features we are
interested to implement for Csound Web-IDE.

Finally, the p5.js Web Editor'® offers a multi-file,
filesystem-based IDE for p5.js projects. Projects are all pub-
lic but only accessible if one is given a URL link from its au-
thor. The Web Editor provides an easy-to-use environment
for development and teaching with p5.js that serves similar
goals as what we envision for the Csound Web-IDE and the

Ohttps://soul.dev/
"https://codepen.io/
2https://jsfiddle.net/
Yhttps://editor.p5js.org/



Csound community.

3. PROJECT GOALS

Our goals for the Csound Web-IDE are to provide a zero-
install, easy to use development environment for Csound.
We believe a browser-based web application will provide
many of the same benefits as using a desktop-based appli-
cation, such as CsoundQt, while also providing additional
features that will allow it to reach a broader audience. Use
cases we considered include:

e Music composition
e Procedural Sound Generation
e Realtime, interactive audio system development

e Computer music pedagogy

Cross-platform Csound project development

To serve those use cases, the Csound Web-IDE is currently
designed to include the following features:

e Multi-file projects with support for audio assets

e Code editor with syntax highlighting and other editing
features

e Project rendering in realtime as well as to disk
e Live code evaluation

e Support audio and MIDI processing through Web Au-
dio and Web MIDI APIs

e Signal scoping (i.e., waveform and spectrum views)*'*

e User-defined graphical user interfaces*
e Project collections™*

e Public project and collections links making projects
easy to share*

By implementing the above, the Csound Web-IDE should
be an application where users may create or import projects;
develop projects within the IDE; share projects with others;
and export projects to be used on other platforms that sup-
port Csound (i.e., desktop, mobile, and embedded systems).
Also, by targeting the browser platform, we see potential
for using the IDE in places where installation of desktop
software is difficult, if not impossible, to manage. Scenarios
include image-based lab computers (such as found at edu-
cational institutions) and Chromebooks'® running Google’s
Chrome OS.

4. ARCHITECTURE

The following describes the architecture of the Csound
Web-IDE application. It describes technologies used;
project data representation; and interaction with Csound,
Web Audio, and Web MIDI for realtime rendering.

“Ttems marked with asterisks are not yet implemented as
of time of this writing and are planned for later phases of
development.

Bhttps://www.google.com/chromebook/

4.1 Technologies

4.1.1 Server

The Csound Web-IDE is built using Firebase as a backend.
Rather than develop our own bespoke server application, we
chose to follow a serverless design and chose Firebase to ful-
fill our requirements for authentication, document storage,
binary file storage, computation, and web serving services.
These requirements are met using Firebase’s Authentica-
tion, Cloud Firestore, Storage, Cloud Functions, and Host-
ing modules respectively.

The choice to delegate server functionality to Firebase was
made primarily due to ease of development and cost. In this
early stage of development, we are currently working under
the limits of the Spark Plan, a free-to-use tier meant for
small projects. Usage and cost over time will factor into
future decisions whether to continue using Firebase under
paid plans or to migrate to a different solution.

4.1.2 Client

The Csound Web-IDE client is built with various
Javascript libraries using Typescript. React'® and Redux'”
handle the user-interface state and rendering logic. As with
many modern Javascript projects, we depend on many li-
braries from the NPM package manager. MaterialUT*® pro-
vides many pre-styled components like buttons, menus and
lists. The code editor itself is based on CodeMirror'®, the
tab system on GoldenLayout®® and FirebaseUI*! provides
us with ready made components for login. We use Web Au-
dio Csound[8], a C library and an interface compiled with
Emscripten[9] into JavaScript and WebAssembly, as our au-
dio engine. This version of Csound is compiled from the
same source as all of the other versions of Csound (i.e.,
desktop, mobile, embedded) and comes with additional JS
library code that manages connections between Web Audio
and Web MIDI to Csound.

While our primary goal is to deploy the client using stan-
dard web browser loading of applications over the internet,
we have seen that the Web-IDE client works equally well
as an Electron®? desktop application. By using Electron we
have full access to a modern browser engine (Chromium)
which can run Web Audio Csound. Electron also provides
full access to NodeJS which gives us the possibility to use ei-
ther Web Audio Csound or NodeJS native-bindings to desk-
top Csound. Further research of the pros and cons in using
native bindings is necessary to determine the value of pro-
viding this option.

4.2 Project Data and File System

Historically, Csound projects were made up of files orga-
nized into directories. A primary .orc and .sco file or single
unified .csd file was used as the entry point into a project.
Additional code files may be included with Csound’s pre-
processor and projects may employ binary assets (e.g., audio
files, text data tables). The project was loaded at the start

https://reactjs.org/

"https://redux.js.org/

Bhttps://material-ui.com/
9https://codemirror.net/
2Ohttps://golden-layout.com/
2https://opensource.google.com/projects/firebaseui
“https://electronjs.org/



Client Csound Server

Firebase

kg Redux

Cloud Firestore

ST } """"" M

Sync Listener

| ,

Redux Store

Emscripten FS

Actions

Figure 2: Diagram showing flow of project data.
The Redux Store is the primary in-memory store for
project data on the client. Redux Actions from the
application or changes coming from Firebase mutate
the Store which is synced to the client via React.
Firestore changes, via a sync listener, update the
Emscripten FS and Redux Store.

of Csound execution. With the introduction of the Csound
API in Csound 5 and its further development in Csound
6, Csound evolved into a system that could be used as a
server that begins execution without a project and where
code would be evaluated live at runtime. This allowed the
source of Csound project data to be determined by the host
application which could, for example, store data in non-
filesystem stores, such as databases, or use bespoke data
file formats.

For Csound Web-IDE, we decided to follow the traditional
model of project representation as a set of files and direc-
tories. Although the implementation uses in-memory data-
stores as a virtual filesystem, the overall effect is that the
project data model appears to the user in the same way as
they would experience when working with Csound on other
platforms and in working with other Csound IDEs. We be-
lieve this will simplify onboarding for experienced Csound
users and that the filesystem model would be easily un-
derstood by others with programming experience in other
languages. Using a filesystem representation was also es-
sential to permit Web Audio Csound to operate using C file
1/0 functionality with Emscripten F'S, meaning no platform-
specific code would be necessary in Csound’s source code for
the browser platform.

Figure 2 shows an overview of how project data is stored
within the Csound Web-IDE application. The primary
source of truth for the client-side application is the Redux
Store. Project data is loaded from Firebase (used for long-
term persistence) into the store and also synced to the Em-
scripten F'S via a synchronization listener. User edits to the
project trigger Redux Actions which may directly modify
the store or first write to Firebase which then triggers the
synchronization flow. Once files are written to Emscripten
FS, Csound can load and interpret those files.

For the user, the presentation of data appears much as it

would on a desktop IDE. The project data files and organi-
zation is shown using a file-tree. Selecting files from the tree
opens up filetype-specific editors in the main editing area for
the Web-IDE. Users can use the file-tree to perform stan-
dard filesystem operations such as creating, renaming, and
moving files and directories. Additionally, projects have per-
missions associated with them that limit accessibility only
to the user (private) or permit visibility to the world (pub-
lic). Using a filesystem representation in Csound Web-IDE
offers a well-known paradigm for Csound users. It also per-
mits easy exporting of projects for use with Csound on other
platforms and importing into the Csound Web-IDE system
from those platforms.

4.3 Csound, Web Audio, Web MIDI

Originally, Csound operated strictly by rendering to disk.
Csound would load projects that define instrument defini-
tions and score data that is driven by a scheduler to trigger
events (e.g., activate an instrument instance at a given time
for a given duration with z additional parameters). After
interpreting the project data and loading data into mem-
ory, Csound would then run to completion and exit. Users
audition the resulting audio file and iterate in this cycle of
editing, rendering, and testing the project until they were
satisfied with the results.

Later, when realtime support was added[6], Csound opera-
tion changed to render to DAC and allow auditioning in real-
time. This change also allowed for realtime input and output
through text, GUI interfaces, audio signals, and MIDI data.
I/O with external systems was provided with Csound via
plugins. Users would select input and output devices when
executing Csound and, within their projects, use Csound
opcodes to read and write data from external sources. They
could write code generically that would work with any kind
of audio and MIDI data that was routed to/from Csound
through the plugin drivers. This allowed them to write a
project that could function on a desktop system as well as—
in the case of Cabbage—within the context of hosted VST
and AU plugins. Additionally, in Csound 6[2], the API and
engine were extended to support runtime evaluation of both
Csound ORC and SCO code, opening up the possibilities of
live coding with Csound.

Over time, Csound usage has grown to cover many use
cases including music composition, sound design, develop-
ment of realtime synthesizers, interactive audio applications,
and more. Since the Csound library used in this project is
compiled using the same C code as desktop, mobile, and em-
bedded versions of Csound, it supports the same use cases
as found on those other platforms.

The following discusses the usage of Csound in the Csound
Web-IDE and interaction with Web Audio and Web MIDI
APIs for realtime rendering. (Ahead-of-time rendering to
disk and user-defined GUI I/O support is planned for the
Web-IDE, but not yet implemented; see Section 5 for further
discussion.)

4.3.1 Realtime Render

The Csound audio engine begins rendering when a user
presses the “Play” button. At this time, messages are sent to
Web Audio Csound to begin rendering using the file marked
as the “main” project file. Users may additionally click on
a file on the file-tree to change what is the “main” project
or right-click on a different Csound file to execute as the



starting point of the project.

During the initialization phase, the CsoundObj API-
provided by Web Audio Csound-will create a Web Audio
AudioNode that is either an AudioWorkletNode or Script-
ProcessorNode, depending upon what the browser supports.
The node wraps a running Csound instance, reads incoming
samples from Web Audio and transfers them to the instance,
executes Csound enough times to fill the Web Audio buffer
size, then writes outgoing samples from Csound back to the
Web Audio node graph.

Csound then starts by reading files from the Emscripten
FS, starting from the main file and moving through #in-
clude’d code files and binary assets. Once the code is read
and interpreted, realtime rendering begins and continues un-
til completion. If a project is designed in the traditional
way, completion occurs when the event scheduler is clear
of any pending events and Csound’s audio graph is clear.
If a project is designed for realtime processing, the project
may run continuously until a user action explicitly turns off
Csound.

4.3.2 MIDI Input

While a Csound project is rendering, users may route
MIDI input from WebMIDI devices into Csound. The MIDI
data may be used for instantiate notes or sending controller
messages for interpretation by Csound user-code. This is
done using CsoundObj’s provided utility methods for in-
stantiating and routing Web MIDI to Csound.

4.3.3 Live Coding

In addition to realtime audio and MIDI input, Csound
Web-IDE’s editors support live coding by realtime evalua-
tion of both ORC and SCO code. This is done by sending
selected code from the editor as text to CsoundObj which
in turn routes text as arguments to one of the appropriate
Csound API functions for code evaluation. This action of
evaluation will bypass triggering changes to the persistent
storage in both Firestore and Emscripten F'S.

Evaluating Csound code at runtime permits users to mod-
ify definitions of instruments and user-defined opcodes as
well as auditioning score statements. Updating a running
system often yields a faster development experience com-
pared to the classic edit, render to completion, and test
cycle when composing music with Csound. Runtime eval-
uation also permits live coding performances with Csound
Web-IDE. For performance, users may create a basic project
that contains library code and audio assets they wish to use,
start Csound, then use a blank editor as a starting point for
live coding their performance.

Using the Csound Web-IDE for live coding, together with
audio and MIDI input, covers a large number of use cases
where Csound has traditionally been used in realtime on the
desktop. It is a testament to the state of browser technolo-
gies that a system like Csound could be supported via We-
bAssembly, Web Audio, and Web MIDI, to provide a cross-
platform, zero-install Web-IDE that can function much like
its desktop counterparts.

5. FUTURE WORK

Csound Web-IDE is currently in an alpha-state of devel-
opment. We plan to finish implementing the features men-
tioned in Section 3 before opening a public beta for testing
and feedback. For the first release, the feature set is primariy

focused on individual usage of the IDE. Social development
features, history tracking, and user-defined graphical user
interface development are planned for future rounds of de-
velopment,.

Current work with binary assets has been limited in scope
to sizes smaller than 1 megabyte. Since Web Audio Csound
(as well as other versions of Csound) works with compressed
files in OGG and FLAC formats, we believe the system
should be able to handle any pedagogical requirements and a
large number of use cases for creative purposes in the short-
term. Further research is required for both maximum num-
ber of assets and maximum size of assets, both in terms of
memory usage on the client-side as well as cost to support
on the server-side. We believe this area of research will be
one applicable to others developing Web Audio applications,
particularly those using Emscripten FS.

Ahead-of-time rendering to disk is planned using a Web-
Worker. Csound will write to Emscripten FS and the user
will be able to download the rendered audio file as a Blob.
We plan to include this functionality in the initial release of
the Web-IDE.

The current editor supports syntax highlighting but does
not yet support other commonly found features in IDEs.
Initial work on documentation browsing and lookup of indi-
vidual opcode entries of the Canonical Csound Reference
Manual[7] is currently implemented in the Web-IDE and
serves as the basis for future work on code completion for
opcodes. Example, template, and tutorial projects are also
on the roadmap for development.

In addition to the Electron-based desktop client, we plan
to explore offering Csound Web-IDE as a Progressive Web
Application?®. This option has already been explored with
success for another Web Audio Csound-based application,
csound-live-code?*, where it is installable as a desktop and
Android application using the Chrome browser. We hope
to show that browser-based audio applications can serve in
many places traditionally handled by native desktop and
mobile applications.

Once user-defined GUI components and the GUI edi-
tor are implemented, we plan to explore making Csound
Web-IDE projects be publishable as Web Audio Modules
(WAM)[3] and Web Audio Plugins (WAP)[1]. Offering
Csound-based plugins that interoperate with other Web
Audio-based applications would open up new areas where
Csound may be used for musicians and developers.

Exploring interoperability with other Csound-based appli-
cations and platforms will require collaboration with devel-
opers of CsoundQt and Cabbage as well as the larger Csound
community. We are excited to see where our web-based
system can compliment the capabilities of existing desktop
IDEs.

Finally, we are excited to see how the Csound Web-IDE
can serve education for both Csound and computer music.
We are hopeful that public collections of projects, together
with social development features, can be a vehicle for de-
velopment of content suitable for education using an active
learning approach.

6. CONCLUSIONS

Zhttps://developers.google.com/web/
progressive-web-apps
*https://live.csound.com/



The Csound Web-IDE provides a web-based develop-
ment environment for Csound sound and music comput-
ing projects. This was implemented using Firebase for the
server-side and numerous well-known libraries and frame-
works for the client-side application. Developing a full-
featured IDE for Csound on the browser platform was made
possible due to Emscripten’s FS filesystem—employed by
Web Audio Csound-as well as using Web Audio and Web
MIDI APIs. Social development features found in other web-
based IDEs are planned to encourage networking, education,
sharing, and discovery of Csound work for users.

We hope the IDE proves useful for both creative and ped-
agogical purposes. We look forward to expanding upon the
system over time to serve both computer music creators and
educators in their work.

7. REFERENCES

[1] M. Buffa, J. Lebrun, J. Kleimola, O. Larkin,

G. Pellerin, and S. Letz. WAP: Ideas for a Web Audio
Plug-in Standard. In 4th Web Audio Conference, TU
Berlin, Berlin, 2018.

[2] J. P. flitch, V. Lazzarini, S. Yi, M. Gogins, and

A. Cabrera. The New Developments in Csound 6. In

International Computer Music Conference 2015, 2015.

J. Kleimola and O. Larkin. Web Audio Modules. SMC,

Maynooth University, 2015.

[4] V. Lazzarini, J. flitch, S. Yi, @. Brandtsegg, J. Heintz,
and I. McCurdy. Csound: A Sound and Music
Programming System. Springer, Berlin, 2016.

[5] R. Michon and Y. Orlarey. The Faust online compiler:
a web-based IDE for the Faust programming language.
In Proceedings of the Linux Audio Conference
(LAC-12), pages 111-116, 2012.

[6] B. Vercoe and D. Ellis. Real-time CSound: Software
Synthesis with Sensing and Control. In International
Computer Music Conference 1990, 1990.

[7] B. Vercoe et al. The Canonical Csound Reference
Manual, 2019.

[8] S.Yi, V. Lazzarini, and E. Costello. WebAssembly
AudioWorklet Csound. In Jth Web Audio Conference,
TU Berlin, Berlin, 2018.

[9] A. Zakai. Emscripten: An LLVM-to-JavaScript
Compiler. In Proceedings of the ACM International
Conference Companion on Object Oriented
Programming Systems Languages and Applications
Companion, OOPSLA 11, pages 301-312, New York,
NY, USA, 2011. ACM.

3



