
iMuSciCA: A Web Platform for Science Education Through
Music Activities

Kosmas Kritsis
Athena R. C., Greece

kosmas.kritsis@athenarc.gr

Manuel Bouillon
University of Fribourg,

Switzerland
manuel.bouillon@unifr.ch

Daniel Martín-Albo
Wiris, Spain

dmas@wiris.com

Carlos Acosta
Leopoly, Hungary

carlos.acosta@leopoly.com

Robert Piéchaud
IRCAM, France

robert.piechaud@ircam.fr

Vassilis Katsouros
Athena R. C., Greece
vsk@athenarc.gr

ABSTRACT
In this paper we present the iMuSciCA web platform which
addresses secondary school students with the aim to sup-
port mastery of core academic content on STEM subjects
(Physics, Geometry, Mathematics,and Technology) along-
side with the development of creativity and deeper learning
skills through the students’ engagement in music activities.
Herein we focus on the technical implementation of the var-
ious music related tools and Activity Environments hosted
by the iMuSciCA workbench, which are exclusively devel-
oped with modern web technologies.

Keywords
Web Audio, WebGL, STEAM education, music interaction

1. INTRODUCTION
The iMuSciCA platform is a European funded project

which aims at providing a web-based workbench for the
deeper learning of STEM (Science, Technology, Engineering
and Mathematics) subjects by bringing Arts and especially
encouraging learners in co-creative music activities [6]. Mu-
sic plays a crucial role in cognitive development of humans
since the early years of life, supported by multiple studies
which report that participation in music lessons is associated
with higher academic abilities of students [1, 9].

Music and STEM resonate with each other within the
iMuSciCA educational framework and work as a real
paradigm of how the art creativity is fostered in to STEM
creativity and vice-versa. iMuSciCA uses inquiry-based sci-
ence education (IBSE) phases [4, 10]: engage, imagine, cre-
ate, analyze, communicate and reflect. Thus, providing real
evidence of the positive impact of the interaction between
arts and science, on the creativity and innovation thinking
of learners. The main objective of the iMuScicA project is
to develop a set of practical activities, such to give learners
the opportunity to explore different phenomena and laws of

Licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: owner/author(s).

Web Audio Conference WAC-2019, December 4–6, 2019, Trondheim, Norway.

© 2019 Copyright held by the owner/author(s).

Figure 1: General overview of the system architecture.

physics, geometry, mathematics and technology through cre-
ative music activities, to examine them from various view-
points and to increase integration among various curriculum
subjects contributing to innovative cross-disciplinary educa-
tional approaches.

2. THE IMUSCICA WORKBENCH
In this section we briefly present the general architecture

of the iMuSciCA web platform and its main components,
focusing on the technical aspects of the various implemented
Activity Environments (AEs) and tools, and specially those
where the music activities take place.

2.1 General Architecture
The iMuSciCA Workbench1 is the main web platform

where the user is able to perform STEAM-related activi-
ties according to the iMuSciCA pedagogical framework. It
provides a set of AEs and Tools, categorized according to
the different STEAM domains in music, science and math-
ematics, engineering and technology. The various tools and
AEs are hosted in different web servers; hence the key role
of Workbench is to operate as the parent HTML document

1https://workbench.imuscica.eu/



that loads the AEs as child IFrame elements and to pro-
vide a common communication framework for supporting
their interoperability (Figure 1). Most of the provided ser-
vices are written in JavaScript and run on the user’s browser
(i.e. client-side). Furthermore our system provides a cloud
storage for saving user-generated data, such as 3D virtual
instrument models and audio recordings. This functional-
ity is handled by a server-side service, named the iMuSciCA
Management Platform (IMP).

2.2 Communication framework
The communication framework implements an internal

protocol that was developed for exchanging information
across the various AEs and tools. The communication proto-
col was implemented based on the Postal.js2 asynchronous
in-memory message bus library, in order to facilitate the
different performance delays of the AEs. Moreover, since
all AEs and tools are IFrame elements, Workbench handles
and federates the allowed communication channels with the
postal.xframe plugin. The following code snippets demon-
strate the postal unique identifier registration of the 3D In-
strument Interaction environment, its subscription to Work-
bench clipboard channel for loading data as well as the pub-
lish function for copying data to clipboard.

// unique identifier registration
postal.instanceId("performance");

// sending data to clipboard
postal.publish({

channel:"clipboard",
topic: postal.instanceId()+".export.receive",
data: {content: someData}

});

// receiving data from clipboard
postal.subscribe({

channel: "clipboard",
topic: postal.instanceId()+".import.receive",
callback: function(data, env){

// do something with the loaded data
}

});

2.3 Audio Manager
Since multiple tools generate and exchange audio data,

there was a need to develop the Audio Manager framework in
order to have a centralized control throughout the iMuSciCA
Workbench. This was achieved by employing the WebAudio
API for implementing the audio routing between the various
audio modules, which can be working either as transmitters
or receivers (see Figure 2). When a tool or environment has
to generate audio, it needs to get the AudioContext from the
central Audio Manger of the iMuSciCA Workbench, create
a transmitting node, and finally share it with the central
Audio Manger by calling the following function.

// generate audio
audioManager.receiveAudioFromNode(

tool.transmitterNode
);

2https://github.com/postaljs/postal.js

Figure 2: The Audio Manager framework.

A similar process is followed in the case where a tool or
environment wants to receive audio from the central Audio
Manager.

// receive audio
audioManager.sendAudioToNode(

tool.receiverNode
);

2.4 Sound Recorder and Metronome Tool
The Sound Recorder (SR) tool enables the user to record

the generated audio from the various AEs and tools that
produce sound, as well as the input from the microphone.
After the end of a recording, the user can playback the au-
dio caption, save it to the IMP or copy it to the Work-
bench Clipboard. Additionally, the recorded audio is rep-
resented by a Blob object (i.e. raw data), that requires fur-
ther compression in order to minimize its size and facilitate
its transmission between the AEs via the communication
framework as detailed previously. To this end, all the com-
pression and decompression processes are implemented with
the LZ-string3 compression library, which produces encoded
UTF-16 strings that can be safely included in a Postal.js
publish message.

The Metronome tool (MT) provides the basic functional-
ities of an original metronome, including start, stop, vari-
able time signature (numerator and denominator) and res-
olution. The MT timer leverages the accuracy of the
AudioContext.currentTime property to precisely calculate
the beat intervals of the selected tempo. A tool can retrieve
from the Workbench MT many pieces of information, re-
garding the time and rhythmical configurations, as well as
its events (pulses) in order to synchronize and schedule audio
events.

3https://github.com/pieroxy/lz-string



2.5 Physical Model-Based Sound Synthesis
The physical model-based sound synthesis engine utilizes

a web port of Modalys [3], which tries to mimic the sound
of natural instruments as closely as possible. Under this
paradigm, sounding objects (strings, plates, bars, mem-
branes or tubes), which are described in physical terms of
geometry, material and other properties, can be connected
with one another through specific interactions, such as strik-
ing, bowing, and blowing. The evolution of the physical
model system is processed in real-time according to the com-
plex physics equations that rule the corresponding phenom-
ena of both objects and interactions, resulting in a very sub-
tle and lively sound.

The code base of the engine was originally developed in
C++, and it was ported to JavaScript using the Emscripten4

transpiler in order to utilize it in HTML5 environments.
Initially the Modalys.js was deployed as a server-side ser-
vice, however this approach introduced extra latency due to
the network communication overhead. We then used vari-
ous optimization strategies until we were eventually able to
perform a musical instrument in a satisfactory way, with-
out perceptible latency. This was achieved by developing
a wrapper library based on the Web Workers API that en-
ables the communication of the WebAssembly5 module, with
the Workbench Audio Manager and the rest of the AEs that
employ the Modalys engine.

2.6 Audio Visualizations
The iMuSciCA platform provides three visualizations, in-

cluding the Snail, the 3D Spectrogram and the 2D visual-
izations, which are briefly described as follows.

2.6.1 Snail
The Snail [5] is a real-time visualization application that

incorporates an original spectral analysis technology, com-
bined with a display on a spiral scheme, as it is depicted in
Figure 3a. The center of the spiral corresponds to the lowest
frequencies, while the perimeter to the highest frequencies.
Furthermore, each turn represents one octave, so that the
tones are organized with respect to angles. The spectrum
analysis is displayed according to perceptive features, in a
way that the loudness of the corresponding frequencies are
mapped to both the line thickness and its brightness. The
original implementation of the Snail was developed in C++
and it was ported to JavaScript using the Emscripten tran-
spiler. The FFT algorithm runs on a WebAssembly mod-
ule, that communicates with the Audio Manager through
an ArrayBuffer .

2.6.2 3D Spectrogram Visualizer
The 3D Spectrogram Visualizer (see Figure 3b) utilizes the

FFT of an AnalyzerNode in order to retrieve the frequency
components that comprise the input signal originating from
the main audio output of the Audio Manager. Moreover,
the 3D graphics were developed with the three.js6 3D li-
brary that uses a WebGL renderer. On each frame, the
rendering function checks if new data has arrived from the
AnalyzerNode in order to update the displayed graphics with
the current spectral values.

4http://emscripten.org
5https://webassembly.org/
6https://threejs.org/

(a) The Snail. (b) 3D Spectrogram.

(c) 2D Visualizations.

Figure 3: The visualizations provided in the iMuSciCA web
platform.

2.6.3 2D Visualizations
The 2D Visualizations (see Figure 3c) display the audio

data of the Audio Manager main output node in three differ-
ent HTML canvases; the first canvas displays the waveform
in time domain, while the second and third canvases display
the frequency domain analysis, as it is computed from an
AnalyzerNode. Moreover, the second canvas, presents the
amplitude of the different frequency harmonics of the input
signal (FFT), while the third canvas displays the variation
of the frequencies over time (2D spectrogram).

2.7 Activity Environments
The iMuSciCA workbench provides nine AEs in total.

However in this section we focus only on those environ-
ments that support musical activities, including the Musical
Whiteboard, Performance Sampler, Tone Synthesizer, 3D
Instrument Design and Interaction environments as well as
the Acouscope.

2.7.1 The Musical Whiteboard
The Musical Whiteboard (MW) is a web-based environ-

ment that enables the free drawing of music on touch-
enabled computers [2]. The x-axis represents time and the
y-axis is mapped to the frequency domain, that is displayed
on the right in Hertz with a correspondence in notes on
the left (see Figure 4f). The user can draw on the canvas
using either the mouse, his finger or a stylus on a touch-
sensitive computer and the MW produces a live sonification
of the drawn strokes. The various colors represent different
sound types (sinewave, triangle, sawtooth and square wave-
forms), thus enriching the overall music creativity. Once the
tune-drawing is complete, the user can playback the whole
creation from left to right. For a wider range of frequencies
the user can use the zoom buttons to increase the frequency



(a) Performance Sampler. (b) Tone Synthesizer.

(c) Leap Motion Interaction Environment. (d) Kinect Interaction Environment.

(e) 3D Virtual Instrument Design. (f) The Musical Whiteboard.

Figure 4: Screenshots of the music related Activity Environments provided by the iMuSciCA Workbench.

and time spans. Various options are available in the settings
menu, such as activating the loop playback or the “snap-to-
line” option, which constrains the strokes to be drawn on
the note lines. The playback speed, time signature and res-
olution is controlled from the Workbench MT.

2.7.2 Performance Sampler
The Performance Sampler is a tool that allows users to

load up to four recorded waveforms (either from the clip-
board or from the IMP), select parts from those recordings
and “program” the activation of each sample at specific time
intervals through a sequencer matrix (see Figure 4a). This
tool is intended to allow exploration of compositions that
can emerge from recordings created with the 3D Instrument
Interaction tool (described later), where users interact with
virtual instruments in real-time. The user can use up to 11
samples (number of rows in the sequencer matrix); the num-
ber of columns in the sequencer matrix depends on the time
signature and time resolution selected by the Workbench
MT and represents a duration of one bar. Additionally, the
above factors affect the width of each cell in the sequencer
matrix and the spacing between consecutive cells, giving a
visual interpretation of the metrical setup of the Workbench
MT. The user is also given the ability to employ random
selection of sample parts and activations, either for each in-
dividual sample or for all samples simultaneously. Sample
selection and manipulation was implemented based on the
“Region” plugin of the Wavesurfer.js7 library.

7https://wavesurfer-js.org/

2.7.3 Tone Synthesizer
The Tone Synthesizer (see Figure 4b) is an environment

for investigating the audio and visual behavior between com-
binations of sinusoidal functions. Moreover, the user can ac-
tivate up to 10 sinusoidal waveform generators with a given
frequency and amplitude, listen the results and visualize the
waveform. It is also possible to load a “timbre” object ex-
ported from a virtual instrument, where the first 10 partials
of the instrument are “assigned” to each sinusoidal element,
where the frequency and amplitude of the individual par-
tials are adopted by the respective sinusoidal elements. In
this sense, the waveform visualisation is an analytic inter-
pretation of the sinusoidal functions rather than a represen-
tation of the actual produced waveform. The user can also
manipulate the analytic waveform visualisation by zooming
in/out, moving horizontally/vertically and applying optimal
zoom, which focuses horizontally on two periods of the min-
imum frequency and vertically on the total amplitude of the
waveform. Furthermore, the Tone Synthesizer is designed
to function as a theremin-like digital musical instrument by
employing the Leap Motion sensor. Specifically, the am-
plitude and frequency values of the 10 sinusoidal elements
are mapped to the x and y positions of the user’s finger-
tips, as they are calculated by the Leap Motion JavaScript
SDK. The user needs to extend a finger in order to acti-
vate the respective sinusoid, whilst elements corresponding
to non-extended fingers have zero amplitude. When the user
activates the Leap Motion-enabled interaction, a graphical
visualisation provides real-time information about the fre-
quency and amplitude of each extended finger.



2.7.4 3D Virtual Instrument Design
The 3D Virtual Instrument Design environment (see Fig-

ure 4e), enables the user to design 3D graphical models
of predefined virtual instruments without requiring any ad-
vanced skills. Specifically, the environment provides six pre-
defined instrument models including circular and square-
shaped membranes, a two string monochord, a guitar, a
tromba marina (bass monochord) and a xylophone. All 3D
models are represented by the glTF 8 format, which facili-
tates the data transmission throughout the iMuSciCA plat-
form. In addition to the 3D editing functionalities, the user
is able to modify and experiment with several physically-
based modeling parameters of the instruments such as size,
material density and tension, which can be sonified by the
Modalys engine.

The modular core engine is written in C++ and it utilizes
the OpenGL9 graphics library, thus enabling a cross plat-
form architecture. The modeling engine is already ported to
several platforms, including, desktop, mobile and web-based
versions. The proposed system benefits from the JavaScript
port of the 3D modeling engine, produced with the Em-
scripten transpiler in order to enable the 3D design services
to run on any HTML5-compatible web browser. The core
modeling engine utilizes the WebAssembly framework for
improving the overall performance of the environment. From
a technical perspective, the engine and the GUI are separate
instances, meaning that the HTML UI communicates with
the core engine through a proprietary API.

2.7.5 3D Instrument Interaction
The 3D Instrument Interaction environment enables the

user to perform the 3D virtual music instruments, by utiliz-
ing two motion sensors, including the Leap Motion and the
Microsoft Kinect sensors. According to the selected sensor
the 3D Instrument Interaction environment loads a differ-
ent subsystem with the corresponding back-end architecture.
The different sub-environments are depicted in Figures 4c
and 4d.

The goals and technical details of the Leap Motion enabled
performance environment have been previously presented
in [8]. Furthermore, previously developed heuristic-based
interaction methods have been updated [8], while experi-
mental deep Neural Network architectures have been em-
ployed for improving the gesture recognition module [7]. In
this regard, new interactions were developed, by introduc-
ing the virtual 3D models of a set of mallets, drumsticks
as well as a bow, in order to interact with the virtual xy-
lophone, membranes and the tromba marina respectively.
Specifically, when the user selects to perform the xylophone
or any of the two membranes, the system maps the palm
position and its orientation to a virtual mallet (xylophone)
or drumstick (membrane). On the other hand, performing
the tromba marina entails continuous interaction between
the movement of the bow and the string of the instrument,
thus requiring the user to perform a natural gesture as hold-
ing a real bow in order to control the horizontal movement
of the virtual bow. Other supported modules that enrich
the educational and creative aspects of the environment in-
clude a gesture recorder and a musical/rhythmical quantizer,
enabling the user to edit his/her recordings while giving a

8https://www.khronos.org/gltf/
9https://www.opengl.org/

deeper insight of his/her performances by reproducing the
same visual and auditory feedback.

Regarding the Kinect-enabled environment, we have de-
veloped a local server written in C#, that uses the Web-
Socket protocol for broadcasting the skeletal tracking data
to the client, which in our case is the Kinect-enable web en-
vironment. The server executable is available online10. Fur-
thermore, the interactions designed for the Kinect-enabled
environment can support both hands as primary, in addition
to a virtual fingerboard for selecting different chords when
performing the guitar. Regarding the xylophone and the
circular membrane, the instruments appear in front of the
player’s avatar for facilitating the interaction that happens
by using the hands as mallets. In the case of the tromba ma-
rina, the user’s primary hand controls the virtual bow, whilst
the non-primary hand controls whether a note is played or
not, depending on its position on the virtual fingerboard.
The movement velocity of the primary hand also modifies
the amplitude of the note. The system has been designed to
support collaborative performances where 2 players are able
to perform different instruments [11].

All virtual instruments, excluding the tromba marina,
produce sound by utilizing the “trigger” function of the
Modalys engine, which is much faster and more computa-
tionally efficient, thus consuming less resources from the
user’s computer and improving the overall user experience
of the AE. Since the tromba marina is a bowed instrument,
it requires a continuous interaction approach for simulating
the excitation of the string from the friction of the bow as
it moves.

2.7.6 Acouscope
The Acouscope Environment employs a hardware device

called HyVibe11, that uses state-of-the-art actuation tech-
nology for identifying the frequency response of any surface.
As it is presented in Figure 5a, the hardware comprises of
two transducers: a) an electric actuator that is used for ap-
plying force on a surface and b) a piezo sensor, for sensing
and converting the reactive vibrations of the surface to an
electric, measurable current. The transducers are connected
through cable to a microcontroller, that runs an embedded
algorithm for analyzing the frequency response of the sur-
face. The web interface (see Figure 5b) communicates with
the hardware through the Web Bluetooth API, in order to
trigger the chirp sound that is sent to the attached surface
via the electric actuator and then retrieve and display the
FFT analysis of the vibration response, as it is sensed from
the piezo sensor. Finally, the corresponding eigenfrequen-
cies are visualized as a note sequence on a stave based on
the VexFlow12 music notation JavaScript library.

3. DISCUSSION AND CONCLUSIONS
In this paper, we present the iMuSciCA web platform, an

innovative pedagogical framework with cutting-edge tech-
nologies for carrying out STEAM activities. Furthermore,
the workbench provides a set of musical AEs, as well as vi-
sualizations and various tools for supporting and enhancing
the interdisciplinarity of the learning process.

10https://athena.imuscica.eu/software/kinect/websocket/
kinectImuscica.zip

11https://www.hyvibe.audio/
12http://www.vexflow.com/



(a) The HyVibe device.

(b) Acouscope Web Interface.

Figure 5: The Acouscope system.

From a technical perspective, our goal was to develop an
easily accessible and OS independent platform. In this sense,
we decided to implement the iMuSciCA Workbench as a web
application by employing state-of-the-art web APIs and li-
braries. The various tools and AEs are hosted in differ-
ent web servers which are loaded as child IFrame elements
within the iMuSciCA Workbench parent HTML document.
In order to support their interoperability and handle the
different performance delays, we developed a common com-
munication framework based on the Postal.js asynchronous
message library. Our system leverages the modular design
of the WebAudio API for implementing the Audio Man-
ager framework, that functions as a centralised controller
for routing audio data across the AEs and tools. Addition-
ally, the MT timer employs the accuracy of the WebAudio
AudioContext.currentTime property for calculating the beat
intervals of the selected tempo.

Large JavaScript objects, such as 3D instrument mod-
els (gITF format) and audio recordings (Blob objects), are
compressed using the LZ-string library. This approach facil-
itates their transmission and minimizes their memory foot-
print. Computational heavy AEs and tools were initially
running as server-side services; however the additional net-
work overhead was an important drawback, affecting the
overall user experience. After testing out various system ar-
chitectures, we decided to employ the Emscripten transpiler
and the WebAssembly standard in order to run these pro-
grams as client-side services, while the Web Workers API
provided us the foundations for implementing the appro-
priate wrapper libraries. The tremendous evolution of the
available web technologies during the last years, allowed us
to fulfill the ambitious goals of the iMuSciCA platform.

4. ACKNOWLEDGMENTS
The iMuSciCA project has been fulfilled and funded by

the European Union’s Horizon 2020 research and innovation
program under the grant agreement No 731861.

5. REFERENCES
[1] J. W. Bequette and M. B. Bequette. A place for art

and design education in the stem conversation. Art
education, 65(2):40–47, 2012.

[2] M. Bouillon, F. Simistira, R. Ingold, and M. Liwicki.
Drawme: Drawing canvas for music creation - a new
tool for inquiry learning. In International Conference
On Learning And Teaching (ICLT 2018), Singapore,
2019.

[3] R. E. Causse, J. Bensoam, and N. Ellis. Modalys, a
physical modeling synthesizer: More than twenty
years of researches, developments, and musical uses.
The Journal of the Acoustical Society of America,
130(4):2365–2365, 2011.

[4] W. S. Gershon and O. Ben-Horin. Deepening inquiry:
What processes of making music can teach us about
creativity and ontology for inquiry based science
education. International Journal of Education & the
Arts, 15(9):1–38, 2014.

[5] T. Hélie and C. Picasso. The Snail: a real-time
software application to visualize sounds. In
International Conference on Digital Audio Effects
(DAFx-17), Edinburgh, United Kingdom, 2017.

[6] V. Katsouros, E. Fotinea, R. Frans, E. Andreotti,
P. Stergiopoulos, M. Chaniotakis, T. Fischer,
R. Piechaud, Z. Karpati, P. Laborde, D. Mart́ın-Albo,
F. Simistira, and M. Liwicki. imuscica: Interactive
music science collaborative activities for steam
learning. Designing for the User Experience in
Learning Systems, pages 123–154, 2018.

[7] K. Kritsis, A. Gkiokas, M. Kaliakatsos-Papakostas,
V. Katsouros, and A. Pikrakis. Deployment of lstms
for real-time hand gesture interaction of 3d virtual
music instruments with a leap motion sensor. In
International Conference on Sound and Music
Computing (SMC 2018), Limassol, Cyprus, 2018.

[8] K. Kritsis, A. Gkiokas, Q. Lamerand, R. Piechaud,
C. Acosta, M. Kaliakatsos-Papakostas, and
V. Katsouros. Design and interaction of 3d virtual
music instruments for steam education using web
technologies. In International Conference on Sound
and Music Computing (SMC 2018), Limassol, Cyprus,
2018.

[9] E. G. Schellenberg. Examining the association
between music lessons and intelligence. British journal
of psychology, 102(3):283–302, 2011.

[10] J. Trna and E. Trnova. Inquiry-based science
education in science and technology education as a
connectivist method. In 8th International Conference
on Education, Samos, Greece, 2012.

[11] A. Zlatintsi, P.-P. Filntisis, C. Garoufis, A. Tsiami,
K. Kritsis, M. Kaliakatsos-Papakostas, A. Gkiokas,
V. Katsouros, and P. Maragos. A web-based real-time
kinect application for gestural interaction with virtual
musical instruments. In Audio Mostly 2018 (AM
2018), Wrexham, Wales, 2018.


