
An approach to assess loudness and dynamics with Web
Audio native nodes

Sebastian Zimmer
Cologne Center for eHumanities

Albertus-Magnus-Platz, 50923 Köln, Germany
sebastian.zimmer@uni-koeln.de

ABSTRACT
Music content providers on the Internet like YouTube1, Spotify2 or
Apple Music3, as well as a range of software playback systems like
the media player “foobar2000”4 have a loudness normalization
feature to match a series of diverse audio tracks in overall loudness.
This is done to keep perceived volume differences between audio
tracks as low as possible. Thus, it is important for music producers,
especially mastering engineers, to master audio tracks with a
particular amount of dynamic range, so that streaming services will
not turn the playback volume of their tracks down. With their
already low dynamic range, a listener would now even better be
able to recognize their inferior sound compared to other tracks with
higher dynamic range.

To correctly assess the dynamics of audio material, this paper
introduces two web applications that compute and visualize the
loudness and dynamic range of audio material, using a subset of the
loudness units described in the recommendation R 1285 by the
European Broadcasting Union6, and using only native notes by the
W3C Web Audio API7.

Keywords
Web Audio API, Loudness, Dynamic Range, EBU R 128

1. INTRODUCTION
In 2010, the European Broadcasting Union (“EBU”) has issued
their recommendation R 128, “LOUDNESS NORMALISATION
AND PERMITTED MAXIMUM LEVEL OF AUDIO SIGNALS”.
In this recommendation, particularly the related EBU Tech
document 3341 [1], the EBU uses new units to measure loudness
that are defined ITU recommendation “ITU-R BS.1770” [2]. Two
of these units, LU (“Loudness Unit”) and LUFS (“Loudness Units,

1 https://youtube.com
2 http://spotify.com
3 http://www.apple.com/de/music/
4 http://www.foobar2000.org/
5 https://tech.ebu.ch/loudness
6 https://www.ebu.ch/home

relative to Full Scale”) use defined filters that provide a more
accurate representation of human perception and thus making them
superior compared to traditional methods to measure loudness like
root mean square (“RMS”).

The recommendations by EBU and ITU are mainly relevant to
broadcast audio, but they are also useful for music producers. In
this paper, an approach to assess loudness and dynamics is
presented, using new units and only native nodes provided by the
Web Audio API. The relatively unperformant
ScriptProcessorNode8 is not used.

In the 1990s and the 2000s, mastering engineers competed in
making records louder and louder, desiring to make them more
appealing when played back amongst other records without any
loudness normalization in place. This so-called “Loudness War”
resulted in records with very little dynamic range and, in extreme
cases, even in severe distortion of the audio material. However,
since more and more streaming services have implemented
loudness normalization in the last few years, it has become more
important for music producers, to find a sweet spot of dynamic
range for their material. Audio material with too little dynamics is
viewed as sounding unpleasant and can lead to ear fatigue [3]. Their
playback volume is turned down by music services, whereas music
with a dynamic range too large will not be turned up enough to
“compete” with other tracks.

This paper introduces two web applications, LoudEv and LoudEv
Live that provide an intuitive way to assess momentary dynamic
range of audio material. To further illustrate this assessment, signal
colors and emojis are used.

2. RELATED WORK
The Loudness War and its consequences have been thoroughly
analyzed by Earl Vickers [4] and others.
Mastering engineer Ian Shepherd has published an infographic that
shows the different loudness normalization techniques of different
music content providers9, and has helped creating a DAW plugin,
that introduced the unit peak-to-short-term loudness (“PSR”) for
the first time10.

7 https://webaudio.github.io/web-audio-api/
8 https://webaudio.github.io/web-audio-api/#idl-def-

ScriptProcessorNode
9 http://productionadvice.co.uk/online-loudness/
10 http://www.meterplugs.com/dynameter

Licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: owner/author(s).
Web Audio Conference WAC-2017, August 21–23, 2017, London, UK.
© 2017 Copyright held by the owner/author(s).

Within the last few years, several other loudness meters have been
released as DAW plugins that incorporate short-term loudness as
well as other new units defined by EBU R 128.

3. IMPLEMENTATION
3.1 Overview
The author of this paper has created two web applications:
LoudEv11 analyses a complete audio file and then provides an
overall assessment of the dynamics.
LoudEv Live12, by contrast, allows analyzing live input signals,
either provided by a MediaElementAudioSourceNode13 or by a
MediaStreamAudioSourceNode14 in combination with the browser
function Navigator.getUserMedia()15.
Both applications use the Skeleton CSS framework. The offline
version of LoudEv also incorporates wavesurfer.js, a customizable
audio waveform visualization generator, built on top of Web Audio
API and HTML5 Canvas16.

3.2 Measuring short-term loudness
The first thing both LoudEv and LoudEv Live do when analyzing
a signal is to compute the short-term loudness, as defined in EBU
R 128.

The short-term loudness “uses a sliding rectangular time window
of length 3 s” [1]. Each channel of the input signal must be
processed separately, thus a ChannelSplitterNode17 splits the signal
into its channels. The first step of the signal-processing algorithm
is a two-stage weighting filter, as specified by the ITU. The two
stages are realized with two BiquadFilterNodes. After that, each
sample of the channel signal is squared, which is done by
connecting the audio graph to a GainNode’s input, as well as its
AudioParam gain (see code sample 1).

highpass_filter_L.connect(ebu_square_gain_L);
highpass_filter_L.connect(ebu_square_gain_L.gain);
Code sample 1: Squaring a signal

The squared samples are then summed within a 3 second window.
This is achieved with a ConvolverNode18 whose impulse response
is a direct current signal of length 3 seconds, of which each sample
has the absolute value 1.0.

11 https://webaudiotech.com/sites/loudev/
12 https://webaudiotech.com/sites/loudev-live/
13 https://webaudio.github.io/web-audio-

api/#MediaElementAudioSourceNode
14 https://webaudio.github.io/web-audio-

api/#MediaStreamAudioSourceNode
15

https://developer.mozilla.org/de/docs/Web/API/Navigator/getUs
erMedia

16 https://www.w3schools.com/html/html5_canvas.asp

After that, the signals of each channel are merged again into one,
which is done by connecting each channel to one GainNode19.
Finally, the absolute sample values are obtained with an
AnalyserNode20 and its method getFloatTimeDomainData(). Each
sample is multiplied with 10*log10 and then the constant -0.691 is
subtracted.

LoudEv Live additionally provides RMS meters for each channel.
These values are computed similarly to the short-term-loudness,
with the addition that the samples are rooted with a
WaveShaperNode21. This node uses a value-mapping curve that
maps each sample value to its square root (see code sample 2).

var curve = new Float32Array(amount);
var slope = 1 / ((amount - 1)/2);

for (var i = 0; i < amount; i++) {
 if (i > (amount/2)){
 var sample_value = slope * i - 1;
 var target_value =
Math.sqrt(sample_value);
 curve[i] = target_value;
 } else {
 curve[i] = 0;
 }
}
Code sample 2: Creating a wave shaping curve, where each
sample value is mapped its square root

3.3 Measuring peak-to-short-term loudness
ratio (PSR)
The peak-to-short-term loudness is computed by subtracting the
momentary short-term loudness from the maximum absolute value
of the last 3 seconds of the signal.

3.4 Visualization and assessment
A function renders the current levels of loudness and dynamics for
each frame. It is called by window.requestAnimationFrame()22.
Under ideal conditions, the refresh rate is 60 fps.

PSR values are mapped to colors, where greener colors symbolize
a more appropriate dynamic range and red color tones symbolize a
dynamic range which is rather low.

PSR values are also mapped to emojis to provide a second intuitive
illustration (see code sample 3).

LoudEv’s and LoudEv Live’s assessments are based on research by
the author as well as the recommendation by Ian Shepherd to keep
the minimum short-term peak to loudness (PSR) of the track above
8 LU, to make sure, that the track is not turned down too much by
music content providers [5].

17 https://webaudio.github.io/web-audio-api/#the-
channelsplitternode-interface

18 https://webaudio.github.io/web-audio-api/#idl-def-
ConvolverNode

19 https://webaudio.github.io/web-audio-api/#idl-def-GainNode
20 https://webaudio.github.io/web-audio-api/#idl-def-

AnalyserNode
21 https://webaudio.github.io/web-audio-api/#WaveShaperNode
22 https://developer.mozilla.org/en-

US/docs/Web/API/window/requestAnimationFrame

Licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: owner/author(s).
Web Audio Conference WAC-2017, August 21–23, 2017, London, UK.
© 2017 Copyright held by the owner/author(s).

Figure 3: LoudEv loudness and dynamic visualization and
assessment of the song “Around the World” by “Red Hot Chili
Peppers”, which is known for its low dynamic range.

if (psr_value < 5){
 emoji = '😵';
} else if (psr_value < 6){
 emoji = '😭';
} else if (psr_value < 7){
 emoji = '😢';
} else if (psr_value < 7.5){
 emoji = '☹';
} else if (psr_value < 8){
 emoji = '🙁';
} else if (psr_value < 8.5){
 emoji = '😕';
} else if (psr_value < 9.5){
 emoji = '😐';
} else if (psr_value < 11){
 emoji = '😊';
} else {
 emoji = '😃';
}
Code sample 3: PSR value to emoji mapping

3.5 ISSUES
The internal mechanisms of Navigator.getUserMedia() seem to
normalize the input signal, which renders the analyzing technique
by LoudEv and LoudEv Live useless for streamed input via
MediaStreamAudioSourceNode.

4. CONCLUSION
LoudEv and LoudEv Live provide an intuitive and easy-to-use way
to assess loudness and dynamics. Because they are web
applications, everyone can use them without much friction. As
more and more amateurs are producing their own music, LoudEv
and LoudEv Live fill the gap of simple, online and free loudness
and dynamic assessment tools.

The flexibility of Web Audio API native nodes allows for
interesting signal processing techniques, without having to rely on
ScriptProcessorNode.

5. REFERENCES
[1] Loudness Metering: ‘Ebu Mode’ Metering To Supplement

EBU R 128 Loudness Normalization. Geneva 2016,
European Broadcasting Union.
https://tech.ebu.ch/docs/tech/tech3341.pdf.

[2] Recommendation ITU-R BS.1770-4 (10/2015): Algorithms
to measure audio programme loudness and true-peak audio
level. Geneva 2017, International Telecommunication Union.
https://www.itu.int/dms_pubrec/itu-r/rec/bs/R-REC-
BS.1770-4-201510-I!!PDF-E.pdf

[3] Sreedhar, Suhas: The Future of Music. In: IEEE
SPECTRUM, August 1, 2007.
http://spectrum.ieee.org/computing/software/the-future-of-
music

[4] Vickers, Earl: The Loudness War: Background, Speculation
and Recommendations. Santa Clara 2010.
http://www.sfxmachine.com/docs/loudnesswar/loudness_war
.pdf

[5] Shepherd, Ian: Loudness online – how loud is loud enough,
and how loud is too loud ? In Production Advice, September
28, 2015. http://productionadvice.co.uk/online-loudness/.

https://www.itu.int/dms_pubrec/itu-r/rec/bs/R-REC-BS.1770-4-201510-I!!PDF-E.pdf
https://www.itu.int/dms_pubrec/itu-r/rec/bs/R-REC-BS.1770-4-201510-I!!PDF-E.pdf
http://www.sfxmachine.com/docs/loudnesswar/loudness_war.pdf
http://www.sfxmachine.com/docs/loudnesswar/loudness_war.pdf

