Tune.js: A Microtonal Web Audio Library

Benjamin Taylor
Goucher College Digital Arts
1021 Dulaney Valley Rd, Baltimore, MD

benjamin.taylor@goucher.edu

ABSTRACT

The authors share Tune.js, a JavaScript library of over 3,000
microtonal tunings and historical temperaments for use with
web audio. The current state of tuning in web audio is
reviewed, followed by an explication of the library’s creation
and an overview of its potential applications. Finally, the
authors share several small projects made with Tune.js and
ponder future development opportunities.

1. INTRODUCTION

As the web browser becomes a development platform
for musical instruments, many JavaScript synthesis toolkits
have arrived at a common question: how should we han-
dle the musical scale? While several solutions exist for us-
ing standard major, minor, and modal scales, the concerns
of contemporary music and musicology often demand more
complex and flexible musical tunings.

We introduce Tune.js' as a toolkit for composing with mi-
crotonal scales and historical temperaments in the browser.
Tune.js is a port of the vast Scala tuning archive (see 1.3)
into JavaScript, resulting in a microtonal tuning API that
can integrate with web audio and which is not confined to
any specific synthesis toolkit. We hope Tune.js will assist in
a wide variety of projects, from recreating historical instru-
ments in the web (similar to the Harry Partch archive® in
Flash), to audiovisual projects which make use of pure tun-
ings and just intonation. Finally, we hope that pairing the
Scala tuning archive with the accessibility and audiovisual
power of the web can lead to new educational tools for just
intonation theory and history.

1.1 Just Intonation

Just intonation (JI), consisting of mathematically pure
ratios between note frequencies, formed the basis of much
of the world’s music until the 16th century. In Renaissance
Italy, the growing popularity of tertian harmony, as well as a
rise in instrumental music, led to the gradual temperament

"http://www.github.com/abbernie/tunejs/

Zhttp://musicmavericks.publicradio.org/features/feature_
partch.html

Licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: owner/author(s).

Web Audio Conference WAC-2016, April 4-6, 2016, Atlanta, USA.

(© 2016 Copyright held by the owner/author(s).

Andrew Bernstein
Goucher College Digital Arts
1021 Dulaney Valley Rd, Baltimore, MD
andrew.bernstein@mail.goucher.edu

of the chromatic scale. Harmonic ratios were slightly ad-
justed — tempered — in order to strengthen the major third
(a dissonant interval in Pythagorean tuning), and to make
instruments sound acceptable in all keys. A full explanation
of just intonation and microtonality is beyond the scope of
the paper; one can be found in Harry Partch’s Genesis of a
Music [7].

In the 20th century, new technologies, cultural cross-
polination, and modern theoretical concerns all led to a
resurgence of JI. Composers such as Harry Partch[7], La
Monte Young[2], and James Tenney each composed exciting
JI works which are now in the canon of 20th century art mu-
sic. Meanwhile, digital technologies have arisen which afford
more sophisticated control of tuning[4]. As we are no longer
limited to how many notes can fit on a keyboard, software
instruments have been able to solve Renaissance tuning con-
cerns while keeping pure intervals, causing JI to once again
be a practical option.

1.2 The State of Tuning in JavaScript

Most popular web audio toolkits address the need to or-
ganize melodies and harmonies around a variety of scales,
modes, and tunings, and many do so quite successfully.
Yotam Mann’s Tone.js has an API explicitly geared towards
musical thinking; for pitch, its synths understand music
text notations like "C4”. Live coding toolkits such as Gib-
ber[1], Lissajous[9], and Lich.js[6] contain dozens of scales
and modes; Charlie Roberts’ Gibber web audio language
contains over a dozen scales, including jazz modes and at
least two just intonation scales[8], while Lissajous includes
over 50 scales including many non-Western and pure tun-
ings. However, there are not yet general purpose toolkits
for composers who want to use more eccentric scales out-
side of these toolkits, for example with the Web Audio API
directly.

One of the most complete general purpose pitch organi-
zation kits on the web is Teoria 3, a comprehensive tool for
music theory in JavaScript which is marvelous for compos-
ing equal tempered music but has no microtonal capabilities.
Meanwhile, other projects such as Mitch Well’s Microtonal
Web Synth* use complex microtonality in the web, but are
standalone instruments and have not been encapsulated for
general purpose use in other projects.

1.3 Scala and MicroTuner

One of the most comprehensive JI tools in desktop com-

3https://github.com/saebekassebil /teoria
“http://www.websynths.com/

puter music is the Scala® program. Scala, a freeware com-
puter music software first released over 15 years ago, lets
users create and hear microtonal scales. It is perhaps the
most successful hub of just intonation activity in computer
music, thanks to the extensive research of its author, Manuel
Op de Coul, who collected thousands of historical tunings
and made them available within the program. Scala pub-
lishes its archive for open use within not-for-profit projects.
For example, Victor Cerullo used the archive to create a cus-
tom Max® object called Microtuner”, which lets Max users
access Scala scales within the patcher paradigm.

2. TUNE.JS

Tune.js brings the Scala archive of over 3,000 microtonal
scales to JavaScript and web audio. Tune’s API takes MIDI
pitch values as input, and returns frequency data, adjusted
MIDI values, or a pitch ratio to a tonic (see 2.2). The result
is a general purpose library of historically interesting scales
which may be used in any web audio instrument, composi-
tion, or artwork,

2.1 Construction

In the Scala archive, each scale exists as a list of frequen-
cies stored in a unique .scl file. To build Tune, we pro-
cedurally accessed each Scala file and parsed its contents,
sorting each scale’s frequency list into a property of a large
JavaScript object called TuningList.

For example, this is the contents of the Scala file for
Ptolemy’s diatonic JI scale:

// ptolemy.scl
//
// Intense Diatonic Syntonon, also Zarlino’s scale

//
@60
:intervals

261.6255653006
294.32876096318
327.03195662575
348.83408706747
392.4383479509
436.04260883433
490.54793493862
523.2511306012

In Tune.js, the same tuning information would look like this:
TuningList.ptolemy = {

description: "Intense Diatonic Syntonon,
also Zarlino’s scale",

frequencies: [261.6255653006, ...]

}

®http://www.huygens-fokker.org/scala/
Shttp://cycling74.com
"http://www.venetica.net/Sites/16tone/mtx_file_specs.htm

By collecting all scales in one JavaScript object and pro-
viding an API for accessing it, we are able to offer an en-
capsulated library that can be included in other JavaScript
projects and does not require a Scala file interpreter.

2.2 API

Tune.js offers a compact API with only a few important
core methods.

Loading a Scale

First, a user creates an instance of Tune, loads a scale
using .loadScale(), and sets a fundamental frequency for the
scale using .tonicize()

tune = new Tune()
tune.loadScale("ptolemy")
tune.tonicize (440)

A full reference of accepted scale names is at the Tune.js
Scale Archive®. To use multiple scales at once, create mul-
tiple Tune instances.

Playing Notes

Once a scale is loaded, tune.note() is used to convert
scale degrees to musically useful numbers such as frequen-
cies, pitch ratios, or adjusted midi values. By default, the
function returns a frequency value that can be used to set
the frequency of a web audio synth.

synthl.frequency.value = tune.note(0)
synth2.frequency.value = tune.note(2)
synth3.frequency.value = tune.note(4)

Given three web audio synths, this code would set the
synths’ frequencies to the 1st, 3rd, and 5th steps in the scale,
respectively, creating a major chord based on the tonic fre-
quency of 440 in Ptolemy’s diatonic tuning.

If the scale degree input to tune.note() is negative or
higher than the scale length, the function automatically
wraps the scale degree to apply to the next octave. In the
following example, assume a 7-note diatonic scale.

tune.note(7)
// the first scale degree, one octave up

tune.note(-1)
// the seventh scale degree, one octave down

An optional second argument for tune.note() specifies an
octave transposition of the scale degree. Therefore, the ex-
amples above could equivalently be expressed as:

tune.note(0,1)
// the first scale degree, one octave up

tune.note(6,-1)
// the seventh scale degree, one octave down

Shttp://abbernie.github.io/tune/scales.html

Output Modes

In addition to outputting frequency values, Tune can out-
put tuning information as adjusted MIDI or as a pitch ratio.
This way, Tune may be used to set the frequency of an os-
cillator (frequency mode), a playback speed for an audio file
(ratio mode), or to tune a MIDI synth (MIDI mode). For ex-
ample, in a diatonic JI tuning in which the fifth scale degree
is a perfect 3/2 ratio to the tonic of 440, the three output
modes would result in the following:

tune.mode.output = "frequency"
tune.note(4)
// returns 660

tune.mode.output = "ratio"
tune.note(4)
// returns 1.5

tune.mode.output = "midi"
tune.note(4)
// returns 76.019547

Input Modes

For compatibility with MIDI devices, Tune has a "midi”
input mode in which an input of 60 refers to the tonic, as
if it is Middle C on a keyboard. This can be useful in cases
of using existing piano rolls, or for connecting Tune to key-
board interfaces which output MIDI values. In "midi” mode,
there is no second argument for octave displacement.

tune.mode.input = "midi"

tune.note(60) // returns the tonic frequency
tune.note(62) // returns the third scale degree
tune.note(64) // returns the fifth scale degree

The relationship to MIDI pitch notation can be troublesome,
however. If a 12-note scale is loaded, the parallel works well:
octaves will be heard at 48, 60, 72, and so on. However, if a
scale such as "partch43” is loaded, which contains 43 notes,
octaves will be heard at 60, 103, 146, and so on, at which
point the MIDI pitch analogy becomes less accurate because
pitches will exceed the 0-128 MIDI pitch range.

2.3 Scales

Tune.js includes the vast majority of scales in the original
Scala archive. Several scales were lost during the porting
process due to parsing errors, which the authors are working
to remedy. Example scales in Tune.js include:

Scale Key Description

jiil2 Basic just intonation with 7-limit tritone
harm30 First 30 harmonics and subharmonics
pyth 31 31-tone Pythagorean scale
ptolemy Diatonic Syntonon, also Zarlino’s scale
couperin Couperin’s modified meantone
partch_43 Harry Partch’s 43-tone pure scale
young-lm | LaMonte Young’s Well-Tempered Piano
slendro Observed Javanese Slendro, Helmholtz
malkauns Mode of Indian Raga Malkauns

Table 1: 9 of the 3,000+ scales in Tune.js

Scale:
partch-barstow

Guitar scale for Partch's Barstow (1941, 1968)

Figure 1: Tune.js Demo: Just Intonation Keyboard

Figure 2: Andrew Bernstein’s Historicism

3. PROJECTS

Just Intonation Keyboard

The Tune.js demo is a digital piano keyboard with a set-
table tuning. A dozen different tunings are accessible via
a dropdown menu, including scales by Partch, Ptolemy,
Pythagoras, Couperin, and Bach. The demo is made us-
ing the Qwerty-Hancock HTML5 keyboard® and Tone.js[5].
While this keyboard is intended to demonstrate the use of
Tune.js, it could also be an educational tool or ear training
tool for students learning about just intonation and different
historical tunings.

Historicism

Co-author Andrew Bernstein’s artwork Historicism
shows the potential of pairing historical tuning, algorithmic
composition, and web graphics. For the work, a markovian
chain is constructed from a MIDI roll of J.S. Bach’s Pre-
lude in C from The Well-Tempered Clavier, using Node.js.
The markov chain is used to construct a generative five-voice
composition using piano samples and a mean-tone tempered
tuning which is accurate to Bach’s period.

10

4. CONCLUSIONS AND FUTURE WORK

Tune.js is currently in open-source release as an assistant
to tuning JavaScript audio projects. With further develop-
ment, other potential applications arise. If paired with a web
audio analyzer node, Tune.js could act as an acoustic tuner,
taking audio input and giving visual feedback. This could
encourage the creation of easily accessible sites for piano
tuners or other enthusiasts who wish to tune instruments
to exotic scales. HTML5 visualizations of these historical

“http://stuartmemo.com/qwerty-hancock/
http://andrewbernste.in/bernie/historicism/

scales could also provide an accessible educational resource
for music students. Tune.js has the potential to move just
intonation research away from table-based representations'?
and towards fun and interactive applications accessible on
the web.

5. ACKNOWLEDGMENTS

The authors would like to thank the Goucher College Digi-
tal Arts community and the web audio community who have
helped grow Tune.js.

6. REFERENCES

[1] J. K.-M. Charlie Roberts. Gibber: Live coding audio in
the browser. In Proceedings of the 2012 International
Computer Music Conference, 2012.

[2] K. Gann. La monte young’s the well-tuned piano.
Perspectives of New Music, 31:134-162, Winter 1993.

[3] H. v. Helmholtz. On the Sensation of Tone. Longmans,
Green, and Co., London, New York, 1895.

[4] G. Kirck. Computer realization of extended just
intonation compositions. Computer Music Jounral,
11:69-75, Spring 1987.

[5] Y. Mann. Interactive music with tone.js. In Proceedings
of the 1st annual Web Audio Conference, 2015.

[6] C. McKinney. Quick live coding collaboration in the
web browser. In Proceedings of the 1/th Annual
Conference in New Interfaces for Musical Expression
(NIME), 2014.

[7] H. Partch. Genesis of a Music. University of Wisconsin
Press, 1949.

[8] C. Roberts, G. Wakefield, and M. Wright. The web
browser as synthesizer and interface. In Proceedings of
the New Interfaces for Musical Expression conference,
2013.

[9] K. Stetz. Lissajous: Performing music with javascript.
In Proceedings of the 1st international Web Audio
Conference, 2015.

Hhttp://www.kylegann.com/Octave.html

