
MT5: a HTML5 multitrack player for musicians
Michel Buffa

University of Nice-Sophia Antipolis
WIMMICS research team

I3S Laboratory
Sophia Antipolis, France

buffa@i3s.unice.fr

Amine Hallili
WIMMICS research team

INRIA Laboratory
Sophia Antipolis, France

Amine.halili@inria.fr

Philippe Renevier Gonin
University of Nice-Sophia Antipolis

I3S Laboratory
Sophia Antipolis, France

philippe.renevier@i3s.unice.fr

ABSTRACT
MT5 is a multitrack player based on the Web Audio API [1]. It’s
open source, runs on multiple devices (all recent desktop browsers
except IE, all IOS browsers based on Safari Mobile, Android
Chrome, Opera and Firefox mobile). It has been entirely
developed in a web browser using the Cloud9 online JavaScript
IDE. A demo version can be tried online at
http://mt5demo.gexsoft.com while another version that proposes
rock classics song by original artists has a restricted access
(http://mt5.gexsoft.com).

Notes
The HTML5 Web Audio domain is still new and we found very
few academic research work published, thus most of the
references will be URLs of applications, libraries, web sites, etc.

Categories and Subject Descriptors
K.3.1 [Computer Uses in Education]: Distance learning.

General Terms
Algorithms, Design, Experimentation, Human Factors.

Keywords
Web Audio, Web based IDE, JavaScript, e-learning.

1. INTRODUCTION
Context: authors of this paper are involved in several teaching
activities related to Web Audio, and two of them are amateur
musicians –rock guitarists who play in bands, and have been
taking guitar lessons in public music schools for years. In 2012,
The W3C proposed a number of online training courses on key
technologies1. One of the authors of this paper is in charge of the
HTML5 course2, and had to cover the different APIs that come
with this standard, including the Web Audio API [1]. The writing
of MT5 – a multitrack player in a web browser- started as a small
hack to learn how this technology worked. Several multitrack
datasets where available on the net, such as MedleyDB [3] that
was primarily developed to support research on melody extraction
(and included 122 multitrack songs) or The 'Mixing Secrets' Free
Multitrack Download Library [2] made for practicing mixing.
Writing a web application that could play multiple tracks in sync
was a sort of challenge back in early 2013. A proof of concept
quickly worked (Figure 1) and we used it as a theme for a master
student course at the Polytech Nice engineer school3 in France. In
addition to the free, legal, multitrack datasets, our students rapidly
found multiple bittorrent/mega files4 packed with hundreds of

1 W3C online training: http://w3devcampus.com
2 http://www.w3devcampus.com/html5-w3c-training/
3 http://tinyurl.com/m338ggm
4 http://multitrackdownloads.blogspot.fr/

rock classics songs played by original artists such as the Rolling
Stones, Metallica, Guns’n’Roses, etc. We found out that these
songs came from different sources: most have been ripped from
the video game series Rock Band and Guitar Hero (that included
songs with 3-16 tracks depending on the version of the games),
some came from sites like hdtracks.com that propose for sale high
quality, master multitrack songs (Queen, David Bowie), some
have been released officially on collector compact disc editions -
this is the case of a few Led Zeppelin songs- and finally some had
tracks separated from the original stereo mix using audio editing
software (this is the case of some songs by “The Police” where we
can hear the other instruments on each separate tracks, if we listen
carefully). Being able to play and mix in a browser these classic
rock songs by original artists led MT5 to become popular in
private circles such as students from our web technology courses,
musician friends or musician students from the rock class in our
public music school.

Figure 1 Proof of concept of a multitrack player, 2013

The rock band of the music school played rock classics and most
songs members had to learn were available in a multitrack format.
Along with Guitar Pro and YouTube, MT5 found its place. You
want to learn Aerosmith, ok, but what if Steven Tyler sang along
with you instead of a midi generated melody? You think this
guitar tab is not faithful, you think this is not how Angus Young
from AC/DC really plays its guitar solo in Back in Black? Isolate
his track and listen carefully! Then mute the track and try
yourself. Just with your web browser. The current version shown
in Figure 2 is rather stable and runs on any recent browser except
Internet Explorer that will support Web Audio in version 12. It
also runs on Safari, Chrome and Firefox mobile. It is open source
and available on Github5.

5 https://github.com/squallooo/MT5

Figure 2 Current version of the multitrack player, 2014.

2. Related works
There are several multitrack web audio applications available on
the web now. We can find “GarageBand on the web” like
commercial applications such as SoundTrap [4] or CLAW
(CLoud Audio Workstation) by Gabriel Cardoso [5] that offers
collaborative features for recording or mixing a multitrack song
project. SoundTrap includes support for midi controllers,
WebRTC video conferencing and companion mobile applications,
while CLAW proposes features for managing dependencies on
parts of a musical project. OpenDAW [6] is a non-commercial
alternative that was a source of inspiration and useful for learning
how to code with the web audio API.

There are also JavaScript libraries for writing multitrack Web
Audio applications, that come with example demos, such as
Helios Audio Mixer [8], a library based on the Google Chrome
experiment Mix.js [9].
We also find NoteFlight [13], a commercial web application/web
site for teachers and students that proposes impressive music
score rendering and playing (they describe themselves as “Finale
in a web browser”). This application uses midi events and a bank
of sound samples to play the songs. This site is more dedicated to
classical music scores and reminds a lot the Guitar Pro software in
terms of sound rendering. A Metallica score will for sure not
sound really good, as with all midi rendering engines.

3. MT5 features
We interviewed several musician students who learned how to
play rock songs. Most of them took guitar, drum, bass or piano
courses at the music school we use to go. The main software they
use for working at home is Guitar Pro, as this is the tool used by
their teachers for writing guitar tabs or music sheets. There are
thousands of musical scores / tablatures available on the web in
the Guitar Pro (GP) format, so we also guess that teachers
download GP files, correct some mistakes and then use them with
their students. These latter almost never write any music score,
they just use the multitrack play mode of GP. For them GP is a
multitrack player (while it is also a music score editor), they can
loop on certain parts, mute or solo some tracks, lower the speed,
change the pitch, and as most beginners are not fluent in reading
musical scores / tabs, they also associate the rhythm patterns to
what they hear. In addition, they look for guitar lessons on
YouTube or on dedicated free sites like VanderBilly.com. There
are numerous videos of variable quality on these sites where
people show how to play classic rock songs, how to place the

fingers on the guitar’s neck, etc. And there are specialists of some
Rock Bands that even got recognition from the bands themselves.
SoloDallas (his nickname on YoutTube), for example is a known
expert for explaining how to play any AC/DC song, June626 for
playing Led Zeppelin and the Beatles, etc.

So, in our player, we reproduced the features used by students
with Guitar Pro: load a song, play, stop, pause, mute or solo some
tracks, change the volumes of tracks, loop on a parts of a song
(Figure 3), etc.

Figure 3 Selecting a loop area and activating loop mode in
MT5, here on a 16 tracks song.

In Guitar Pro, we can see parts of the songs as we have bars, and
markers that identify the structure of the song. With audio files we
can either use markers too (song metadata) or a more visual
approach that consists in visualizing the sound samples. The
sound wave shapes help identifying what is going on in a
particular track, Figure 3 shows in the first track –Angus Young
guitar solo track of Back in Black- the noticeable wave shape of
the guitar solo (we selected this part for looping in the presented
example). At the end of this paper we will discuss the next version
of MT5 that will make heavy use of metadata for navigating along
a track, and add support for Guitar Pro score rendering in sync
with multitrack audio.

Figure 4 MT5 on an Android Smartphone.

We also added the possibility to save client-side a mix of the
current song as a .wav file. This works only with browsers that
implement the FileSystem and FileWriter HTML5 APIs (Chrome
and Chrome mobile on android). Just mute the solo guitar track,
click on the “save mix button”, play the song, stop it and it will
write a .wav file on your hard disk. You can listen to it directly
with any audio player on your desktop or phone. This feature has
been written as an experiment.

We also kept the GUI simple and reduced the “technological risk”
by limiting the number of features of this first version, so that we

can focus on stability, and on making it usable on mobile devices,
as shown in Figure 4 and Figure 5. There is however room for
improvements, in particular for adapting the GUI to smartphones
(we will address this in a next version).

Figure 5 MT5 on an iPad / Safari

In the current version it is not possible to change the speed of a
song without changing the pitch, or changing the pitch without
changing the speed. This is called time stretching and doing that
in real time on a multitrack audio song, in JavaScript, is a real
challenge. There are pieces of JavaScript source code that do that,
like the implementation proposed by the author of the musical
score rendering JavaScript library VexFlow [11][10], that does
not work in real time, or the one in the Keyboard-Singer
application [12] in which your voiced is pitched in real time
depending on a note you play on a virtual keyboard on the screen.
These experiments only work with a single audio stream.

4. Implementation
MT5 was developed as a proof of concept and is in its first stable
iteration. The server side code is really simple, about 50 lines of
JavaScript code that runs on a NodeJS server. Each song, server
side, is a directory whose name is the name of the song, and
whose files inside are the tracks, in mp3, ogg or wav format.

Figure 6 MT5 has been developed 100% in a web based IDE.

In our research team we developed an online JavaScript web
based IDE for writing applications that exploits the web of data
and semantic data, called WikiNext [15]. In 2012 we were making
a state of the art and started studying other existing IDEs so we
decided to use the Cloud9 IDE for MT5, in order to see if web
based IDEs were valuable tools. MT5 has been developed 100%
in a web based IDE, it’s not a huge application but the experience
was a success and we kept developing it in our web browser.

Cloud 9 includes a NodeJS server for the back end of projects,
supports collaborative editing (à la Google doc), includes a Unix
terminal and sync project files with source code repositories like
GitHub, BitBucket, etc. We were able to push the source code to
our hosting server directly from the terminal in Cloud9 web page
of the MT5 project, as shown in Figure 6.

We implemented two web services using the “express” module of
NodeJS: one for getting the list of tracks, the other one for getting
the list of tracks in a particular song.

http://mt5demo.gexosoft.com/track will answer a JSON array like
that:

[
"Admiral Crumple - Keeps Flowing - Demo",
"Big Stone Culture - Fragile Thoughts",
"How To Kill A Conversation -
HeartOnMyThumb",
"John McKay - Daisy Daisy",
"Londres Appelle",
"Street Noise - Revelations",
"Tarte a la cerise",
"Wesley Morgan - Flesh And Bone"
]
And
http://mt5demo.gexsoft.com/track/Admiral%20Crumple%20-
%20Keeps%20Flowing%20-%20Demo will return the list of
tracks of the first song:
{
"id":"Admiral Crumple - Keeps Flowing -
Demo",
"instruments":[
 {"name":"01_Kick1","sound":"01_Kick1.mp3"},
 {"name":"02_Kick2","sound":"02_Kick2.mp3"},
 {"name":"03_Snare","sound":"03_Snare.mp3"},
 {"name":"04_Hat1","sound":"04_Hat1.mp3"},
 {"name":"05_Hat2","sound":"05_Hat2.mp3"},
…
]}

Client side we had to face several difficulties and we learned the
hard way how to work with the Web Audio API.

Understanding the web audio graph concepts:
Play/Stop/Pause/Jump in an unnatural way
There are some strange things to learn when you just want to
implement a simple play/pause/stop/jump operation with a web
audio graph. In MT5 we have a very simple audio graph. Nothing
complicated. Let’s have a look at it with a 3-track song:

Figure 7 Web Audio Graph of a 3-track song in MT5

Each sound sample is represented as an AudioBufferSource node.
This corresponds to each track. Then each of these nodes is
connected to a gain node (volume of the track), then all volumes
are connected to another gain node (the master volume of the
song), then to an analyzer node that is used to display frequencies
that dance in real time when the music is played, and into a

ScriptProcessor node (a custom node) used for saving the mix as a
.wav file if requested. Finally the audio stream comes to an
AudioDestination (the speakers).
The things we learned the hard way are:

• We can call the start() method on an AudioBufferSource
only once,

• If we call the stop() method on an AudioBufferSource,
the node cannot be used anymore.

• There is no pause() method on an AudioBufferSource,
• There is no easy way to jump to another part of the

song, in the middle of a sound sample, if we already
called the start() method (if it’s already playing).

So, once a song is stopped by calling the stop() method on each
source nodes, the nodes are meant to be thrown away. We need to
recreate new ones and re-connect them to the audio graph if we
want to play the song again.
As pausing a song or jumping to another part of a song is
equivalent to stopping it and playing it again, we’ve got to re-
create the AudioBufferSource nodes of each track and connect
them to the rest of the audio graph before calling the start()
method on each node. This seemed very unnatural to us but
apparently the web audio API is optimized for this pattern.

Also, we thought that calling stop() on these nodes kind of
destroyed them and that the JavaScript garbage collector would
release the corresponding memory. We were wrong. The web
audio debugger available in the last versions of Firefox showed
that these nodes were not garbage collected unless we deleted
them explicitly. Without this precaution, looping or jumping a lot
on a song with many tracks quickly slowed down the whole user
experience.
Figure 8 presents pseudo JavaScript code that shows how to
implement the play/stop/pause operations:

Figure 8 Pseudo code for play / pause / stop

Dealing with time
The AudioContext object at the heart of the WebAudio API has a
property named currentTime, a high precision timer. We thought
we could use it to display the currentTime when we play a song,

for jumping to any part of a song, etc. The problem is that this
variable is a double representing an ever-increasing hardware time
in seconds used for scheduling. It starts at 0 at a time that differs
from one browser to another and cannot be stopped, paused or
reset. In order to measure a period of time you’ve got to measure
deltas between different values of the currentTime variable, at
different times. Chris Wilson wrote a very good article about the
different approaches one could use when dealing with time in a
web audio application [14], and we chose to use the intervals
generated each 60th of a second by an animation loop scheduled
by the requestAnimationFrame HTML5 API. A function like that:

Figure 9 using the requestAnimationFrame API to measure

time deltas
Dealing with changes in the API
As stated on an article posted on the Mozilla Developer Network
web site: “The Web Audio standard was first implemented in
WebKit, and the implementation was built in parallel with the
work on the specification of the API. As the specification evolved
and changes were made to the spec, some of the old
implementation pieces were not removed from the WebKit (and
Blink) implementations due to backwards compatibility reasons.
New engines implementing the Web Audio spec (such as Gecko)
will only implement the official, final version of the specification,
which means that code using webkitAudioContext or old naming
conventions in the Web Audio specification may not immediately
work out of the box in a compliant Web Audio implementation.”
When we started working on MT5, there was only the
webkitAudioContext implementation available. Then Firefox
supported the official AudioContext version and we had to choose
between them. Fortunately a library named “webkitAudioContext
monkeypatch”6 was released soon after, that makes most code
targeting webkitAudioContext to work on the standards based
AudioContext out of the box. So we included this library, adapted
all our code to the official API and it could run on nearly any
recent browser, mobile or desktop.

Drawing sound sample shapes
We chose to have an accurate representation of the sound
samples, with an oversampling approach: iterate through the
sample values and draw the corresponding frequencies in a
HTML5 canvas. As there are many values in a sound samples
(can be several millions…), this is a much longer process that we
can have with an under sampling approach (iterate through the
columns of a canvas, and pick the sample value). This leads to
very different results as shown in Figure 10 and Figure 11. In
MT5 we used an adapted version of the code from the
WaveSurfer.js7 library.

6 https://github.com/cwilso/webkitAudioContext-MonkeyPatch
7 https://github.com/katspaugh/wavesurfer.js

Figure 10 Under sampling

Figure 11 Oversampling

5. Evaluation and perspectives
MT5 is used by some students from two public music schools, and
two music teachers, one is the electric guitar teacher from the
music school of Biot, a village in the French Riviera, the other one
teaches multiple instruments and is in charge of the OnOff
association8 that proposes teenagers to play in rock bands. These
students have to learn regularly classic rock songs, entirely or just
parts of them. Or they just learn some songs by themselves. The
MT5 version packed with hundreds of original rock classics really
had its success. Play with Mick Jagger while you do the Keith
Richard’s clone in your bedroom!

Figure 12 Mockup of MT5 version 2. Notice the chapters on
the left and a logical timeline at the top. Scores can be

showed/hidden
We also started an evaluation program with students who follow
the Human Machine Interface master 2 at the Polytech Nice
engineer school. They started to conduct interviews, and ask MT5
users how they used the tool and what they would like to see in
future versions. The study is still on its way but it appeared that
one thing everyone did was to look at sheet of papers with the
musical score or tablature, or looked at a Guitar Pro rendering of
the musical score from time to time, and then tried to play along
with the audio multitrack songs. They also used to watch some
lessons on video sharing sites like YouTube. They complained
that MT5 on smartphones was really not adapted: the GUI was too
small and they had to zoom in a lot, and it could take very long to
decode the song tracks once downloaded. Also, the phone was
becoming very hot during this operation.

The teachers proposed to include some videos also, synced with
the musical score (we filmed a teacher explaining how to play the
different parts of a song and will include it as a sample in the next
version). They also expressed the need to have “chapters” or a

8 http://associationonoff.free.fr/

kind of predefined structures in songs, to make easier working on
a given part: solo, intro, verse1, bridge, chorus 2, etc.

So we started to make some mockup prototypes of a new version,
and also looked for technical solutions in order to display a
musical score or tablature in sync with the multitrack audio or
with a video.

Here are some mockups we made. We will validate them with the
students and teachers:

Figure 13 Mockup with a pedagogical video.

Figure 14 Mockup of a zoomed view of a track with video and

score.
Rendering Guitar Pro musical scores / tablatures in real time
We integrated the alphatab.net library [16] on the work version of
MT5. This library renders Guitar Pro files in real time in an
HTML5 canvas, and while its documentation is rather poor, it
works pretty well. We designed an API layer that allows us to
render in real time any bar interval of any track of a song, as
shown in Figure 15.

6. Conclusion
We presented MT5, a web audio open source multitrack player,
used as a learning tool by musicians, mainly involved with rock
music. The current version is stable and runs on most recent
browsers, desktop or mobile, except IE that announced support for
web audio in its version 12. The tool is stable, available online,
and a version 2 is on the work, that should propose a much richer
experience. As a first mid-size experience with web audio

development, MT5 is already a usable tool that found its place in
some music schools.

Figure 15 Preliminary experimentations: displaying musical

score sections in sync to the audio, using the alphatab.net
guitar pro file rendering library.

7. Acknowledgements
We would like to thank Pr. Roger Lartheau from the Biot music
school for his advices and patience.

8. REFERENCES
[1] Web audio API. http://www.w3.org/TR/webaudio/

[2] The 'Mixing Secrets' Free Multitrack Download Library:
http://www.cambridge-mt.com/ms-mtk.htm

[3] R. Bittner, J. Salamon, M. Tierney, M. Mauch, C. Cannam
and J. P. Bello, "MedleyDB: A Multitrack Dataset for
Annotation-Intensive MIR Research", in 15th International

Society for Music Information Retrieval Conference, Taipei,
Taiwan, Oct. 2014.

[4] Soundtrap: https://www.soundtrap.com, presentation video
https://www.youtube.com/watch?v=PMH1vM-dSc0

[5] Gabriel Cardoso: Cloud Audio Workstation,
http://www.claw-studio.com/

[6] Adam Levine and Piettro Verrecchia, OpenDAW:
https://github.com/pverrecchia/OpenDAW

[7] Proposal for a W3C Media Multitrack API:
http://www.w3.org/WAI/PF/HTML/wiki/Media_Multitrack_
Media_API

[8] Helios Audio Mixer JavaScript library:
https://github.com/heliosdesign/helios-audio-mixer

[9] Mix.js – Chrome Experiment -
https://github.com/kevincennis/Mix.js

[10] VexFlow time stretching: http://vexflow.com/vexwarp/

[11] VexFlow, Music engraving in JavaScript and HTML5,
http://www.vexflow.com

[12] Keyboard-Singer: sing along and pitch your voice in real
time: https://github.com/bioball/Keyboard-Singer

[13] NoteFlight, “Finale in a web browser”,
http://www.noteflight.com/

[14] Chris Wilson - A Tale of Two Clocks - Scheduling Web
Audio with Precision, 2013,
http://www.html5rocks.com/en/tutorials/audio/scheduling/

[15] Pavel Arapov, Michel Buffa, and Amel Ben Othmane. 2014.
WikiNEXT: a wiki for exploiting the web of data. In
Proceedings of the 29th Annual ACM Symposium on
Applied Computing (SAC '14)

[16] Alphatab.net a library that renders Guitar Pro files in
HTML5 canvas or SVG, http://www.alphatab.net

